Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Dãy số nào sau đây có giới hạn là 0? A ( 5 3 )n B ( 4 e )n C ( − 5 3 )n D ( 1 3 )n Câu 2 Tính lim x→+∞ x +[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu !Dãy số sau có giới !n hạn 0? n A B e !n C − !n D C D B C +∞ D B +∞ C −∞ D x+1 x→+∞ 4x + B Câu Tính lim A 1 Câu Giá trị lim(2x2 − 3x + 1) x→1 A Câu Tính lim x→1 A Câu Tính lim x3 − x−1 x→+∞ x−2 x+3 C − D −3 Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim [ f (x) + g(x)] = a + b B lim = x→+∞ x→+∞ g(x) b C lim [ f (x) − g(x)] = a − b D lim [ f (x)g(x)] = ab A B x→+∞ x→+∞ Câu Tính lim x→5 A − x2 − 12x + 35 25 − 5x B −∞ x+1 Câu Tính lim x→−∞ 6x − 1 A B Câu Dãy số có giới hạn 0?! n n3 − 3n A un = B un = n+1 C +∞ D C D C un = n − 4n !n −2 D un = C D −1 2−n Câu 10 Giá trị giới hạn lim n+1 A B √ √ Câu 11 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A ≤ m ≤ B < m ≤ C ≤ m ≤ D m ≥ 4 Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≥ D m ≤ Trong khẳng định sau đây, khẳng định đúng? Câu 13 [3-12217d] Cho hàm số y = ln x + A xy0 = −ey − B xy0 = −ey + C xy0 = ey + D xy0 = ey − 2 Trang 1/5 Mã đề √ Câu 14 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B Vô số C 63 D 64 Câu 15 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D q Câu 16 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [−1; 0] C m ∈ [0; 1] D m ∈ [0; 4] Câu 17 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 − log 2x 1 − ln 2x − ln 2x A y0 = B y0 = C y0 = D y0 = x 2x ln 10 x ln 10 2x3 ln 10 Câu 19 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 2020 D 13 Câu 20 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (1; 3; 2) C (2; 4; 4) D (2; 4; 6) Câu 21 Tính lim n+3 A B C D ! 3n + 2 + a − 4a = Tổng phần tử Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D un Câu 23 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B −∞ C D Câu 24 Dãy số sau có giới hạn khác 0? n+1 A √ B n n n−1 Câu 25 Tính lim n +2 A B ! 1 Câu 26 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C n D C C D 1 + + ··· + 1+2 + + ··· + n B C 2 sin n n D ! Câu 27 [3-1131d] Tính lim A Câu 28 Tính lim A 2n2 − 3n6 + n4 B C D +∞ D Trang 2/5 Mã đề Câu 29 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a < lim = > với n lim = −∞ v n ! un D Nếu lim un = a , lim = ±∞ lim = Câu 30 Dãy số sau có giới hạn 0? − 2n n2 + n + A un = B u = n 5n + n2 (n + 1)2 C un = n2 − 3n n2 D un = n2 − 5n − 3n2 Câu 31 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a 8a a B C D A 9 9 [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S √ BC) √ √ 2a 57 a 57 a 57 A B a 57 C D 19 19 17 Câu 33 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B 2a C a D A a Câu 34 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 0 0 Câu 35.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a C D d = 30◦ , biết S BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Trang 3/5 Mã đề a A a B √ a D 2a C Câu 40 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A C B a D 2 Câu 41 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C dx = ln |x| + C, C số x xα+1 B x dx = + C, C số α+1 Z D 0dx = C, C số α Câu 42 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án √ B F(x) = x nguyên hàm hàm số f (x) = x C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 43 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z C f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Câu 44 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Z u (x) dx = log |u(x)| + C B u(x) C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B Cả ba câu sai C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) Câu 46 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Cả hai D Chỉ có (I) Trang 4/5 Mã đề Câu 47 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? ( f (x) − g(x))dx = A Z C ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx k f (x)dx = f B Z Z g(x)dx D f (x)g(x)dx = Z f (x)dx, k ∈ R, k , Z f (x)dx g(x)dx Câu 48 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 49 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Chỉ có (I) C Cả hai câu D Cả hai câu sai Câu 50 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C f (x)dx = F(x) +C ⇒ Z B Z f (u)dx = F(u) +C D Z Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Z k f (x)dx = k f (x)dx, k số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A B D D B A 10 11 A D C 12 D 13 15 D 14 A B 16 B 17 A 18 19 A 20 D 22 D 21 C C 23 D 24 B 25 D 26 B C 27 28 A 29 A 30 A 31 D 33 35 C B D 37 39 41 32 C 34 C 36 C 38 C 40 A C B 42 B 43 A 44 B 45 A 46 B 47 49 D 48 50 C D C ... số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A B D D B A 10 11 A D C 12 D 13 15 D 14 A B 16 B 17 A 18 19 A 20 D 22 D 21 C C 23 D... [3-1131d] Tính lim A Câu 28 Tính lim A 2n2 − 3n6 + n4 B C D +∞ D Trang 2/5 Mã đề Câu 29 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ B Nếu lim un = +∞ lim = a > lim(un... hai sai B Chỉ có (II) C Cả hai D Chỉ có (I) Trang 4/5 Mã đề Câu 47 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? ( f (x) − g(x))dx = A Z C ( f (x) + g(x))dx = f