1. Trang chủ
  2. » Khoa Học Tự Nhiên

Đề thi tuyển sinh lớp 10 tỉnh Đak nông năm 2012 môn toán chuyên pdf

5 552 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 187,26 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH ĐĂK NÔNGTHI TUYỂN SINH VÀO LỚP 10 THPT Khóa ngày 22 tháng 6 năm 2011 MÔN THI: TOÁN (CHUYÊN) Thời gian: 150 phút (Không kể thời gian giao đ ề) Câu 1: (2,0 điểm) a. Giải phương trình: 4 2 x 7x 12 0    . b. Giải hệ phương trình: 2 2 4 2 1 1 5 x y 1 5 21 x y            Câu 2: (2,0 điểm) Cho biểu thức: a a a a 1 P . a 1 a(a a 1)      (với a 0, a 1   ) a. Rút gọn P. b. Tính giá trị biểu thức P biết a 13 48 7 48     . Câu 3: (2,0 điểm) Cho parabol (P): 2 1 y x 2  và đường thẳng (d): y mx 3   , (m là tham số). a. Chứng minh rằng (d) luôn cắt (P) tại 2 điểm phân biệt I, J với mọi m. b. Xác định m để tam giác OIJ cân tại O (O là gốc tọa độ). Câu 4: (3,0 điểm) Cho AB = 3a, trên đoạn thẳng AB lấy điểm C sao cho 1 AC AB 3  . Hai đường thẳng qua A tiếp xúc với đường tròn tâm O đường kính BC lần lượt tại P và Q. a. Chứng minh tứ giác OPAQ nội tiếp. b. Kéo dài OP cắt đường tròn (O) tại E. Chứng minh rằng tứ giác OBEQ là hình thoi. c. Trên tia đối của tia BA lấy điểm M. Đặt BM = x. ME cắt AQ tại N. Xác định x theo a để tam giác EQN có diện tích bằng 2 a 3 16 . Câu 5: (1,0 điểm) Giả sử phương trình: 2 ax bx c 0    có 2 nghiệm 1 2 x , x và phương trình 2 cx bx a 0    có 2 nghiệm 3 4 x , x . Chứng minh rằng: 2 2 2 2 1 2 3 4 x 2x x 2x 4 2     . ĐỀ CHÍNH THỨC Hết (Giám thị không giải thích gì thêm). Họ và tên thí sinh: , SBD: Giám thị 1: , Giám thị 2: SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT TỈNH ĐĂK NÔNG Khóa ngày 22 tháng 6 năm 2011 MÔN THI: TOÁN (CHUYÊN) ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM MÔN TOÁN Nội dung Điểm Câu 1: a. Đặt t = 2 , 0 t x t   . Phương trình đã cho trở thành: 2 7 12 0 t t    0,5 3 4 t t       0,25 t = 3  3 x   t = 4  2 x   Vậy phương trình đã cho có 4 nghiệm 3 x   ; 2 x   . 0,25 b. Điều kiện: . 0 x y  Đặt 2 2 1 1 ; ( , 0) u v u v x y    . Hệ đã cho trở thành: 0,25 2 5 1 4 5 21 u v u v u v              hoặc 4 1 u v      0,25 Với 1 4 u v      hệ có nghiệm 1 1 1 1 (1; ), (1; ), ( 1; ), ( 1; ) 2 2 2 2     Với 4 1 u v      hệ có nghiệm 1 1 1 1 ( ;1), ( ; 1), ( ;1), ( ; 1) 2 2 2 2     Vậy hệ phương trình đã cho có 8 nghiệm: 1 1 1 1 (1; ), (1; ), ( 1; ), ( 1; ) 2 2 2 2     , 1 1 1 1 ( ;1), ( ; 1), ( ;1), ( ; 1) 2 2 2 2     0,25 0,25 Câu 2: a. Ta có: 3 ( 1) 1 . 1 ( 1) a a a P a a a      0,5 ( 1) 1 . 1 ( 1)( 1) a a P a a a a        0,25 1 1 P a   0,25 b. Ta có: 13 48 2 3 1    7 48 2 3    0,5 3 1 a   0,25 1 3 P  0,25 ĐỀ CHÍNH THỨC Câu 3: a. Phương trình hoành độ giao điểm của (P) và (d): 2 1 3 2 x mx   2 2 6 0 x mx     (1) 0,5 2 ' 6 0 m     với mọi m 0,25 Suy ra phương trình (1) luôn có 2 nghiệm phân biệt với mọi m. Do đó (P) luôn cắt (d) tại 2 điểm phân biệt. 0,25 b. Để tam giác OIJ cân tại O thì OI = OJ. Do (P) nhận Oy làm trục đối xứng nên IJ  Oy. Suy ra (d) // Ox. Do đó (d) có hệ số góc m = 0. Vậy với m = 0 thì tam giác OIJ cân tại O. 0,5 0,5 Câu 4: a. Do AP, AQ là tiếp tuyến với (O) nên: ; AP OP AQ OQ   0,5    0 180 APO AQO  . Suy ra tứ giác OPAQ nội tiếp. 0,5 b. Vì C là trung điểm của AO nên PC = QC =a. Suy ra tứ giác OPCQ là hình thoi.  CP // OQ và CP = OQ = a (1) Do BECP là hình chữ nhật nên: BE // CP và BE = CP = a. (2) 0,5 (1), (2) suy ra: BE//OQ, BE= OQ = a nên tứ giác OBEQ là hình bình hành. Mặt khác OB = OQ = a nên OBEQ là hình thoi. (đpcm) 0,5 c. Kẻ NK  AM, NK cắt EQ tại H. Vì QE//AM nên NH  EQ và EQ NH MA NK  (1) Ta có: 2 1 3 3 . 2 16 8 EQN a a S NH EQ NH      0,25 0,25 0,25 5 6 4 2 2 I J O H B C O A M N P Q E K 3 3 5 3 8 2 8 a a a NK NH HK      Từ (1) suy ra 1 5 3 5 2 5 EQ MA EQ a x a x a MA         Vậy với x = 2a thì thỏa mãn yêu cầu bài toán. 0,25 Câu 5: Áp dụng bất đẳng thức Côsi Ta có: 2 2 1 2 1 2 2 2 2 | | 2 2 c x x x x a    2 2 3 4 3 4 2 2 2 | | 2 2 a x x x x c    0,5 Suy ra: 2 2 2 2 1 2 3 4 2 2 2 2 c a x x x x a c            Mặt khác: 2 . 2 . 2 c a c a c a a c a c a c     Do đó 2 2 2 2 1 2 3 4 2 2 4 2 x x x x    0,5 *Lưu ý: HS có thể làm theo cách khác đúng cũng được điểm tối đa. . SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH ĐĂK NÔNG KÌ THI TUYỂN SINH VÀO LỚP 10 THPT Khóa ngày 22 tháng 6 năm 2011 MÔN THI: TOÁN (CHUYÊN) Thời gian: 150 phút (Không kể thời gian.  . ĐỀ CHÍNH THỨC Hết (Giám thị không giải thích gì thêm). Họ và tên thí sinh: , SBD: Giám thị 1: , Giám thị 2: SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT TỈNH ĐĂK NÔNG Khóa. THI TUYỂN SINH LỚP 10 THPT TỈNH ĐĂK NÔNG Khóa ngày 22 tháng 6 năm 2011 MÔN THI: TOÁN (CHUYÊN) ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM MÔN TOÁN Nội dung Điểm Câu 1: a. Đặt t = 2 , 0 t x t 

Ngày đăng: 02/04/2014, 12:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w