1. Trang chủ
  2. » Khoa Học Tự Nhiên

Đề thi tuyển sinh lớp 10 THPT chuyên năm 2011 môn Toán Tỉnh Nam Định pps

3 357 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 171,55 KB

Nội dung

www.vnmath.com www.vnmath.com Trang 1 SỞ GIÁO DỤC – ĐÀO TẠO NAM ĐỊNH ĐỀ THI TUYỂN SINH LỚP 10 TRƯỜNG THPT CHUYÊN NĂM HỌC 2011 – 2012 Môn: TOÁN ( chung) ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút Đề thi gồm 02 trang PHẦN 1 – Trắc nghiệm (1điểm): Mỗi câu sau có nêu bốn phương án trả lời (A, B,C, D) , trong đó chỉ có một phương án đúng. Hãy chọn phương án đúng và viết vào bài làm chữ cái đứng trước phương án lựa chọn. Câu 1: Phương trình 2 x mx m 1 0     có hai nghiệm phân biệt khi và chỉ khi: A. m 2  . B. m   . C. m 2  . D. m 2  . Câu 2: Cho đường tròn (O) nội tiếp tam giác MNP cân tại M. Gọi E; F lần lượt là tiếp điểm của đường tròn (O) với các cạnh MN; MP. Biết  0 MNP 50  . Khi đó, cung nhỏ EF của đường tròn (O) có số đo bằng: A. 0 100 . B. 0 80 . C. 0 50 . D. 0 160 . Câu 3: Gọi  là góc tạo bởi đường thẳng y x 3   với trục Ox, gọi  là góc tạo bởi đường thẳng y 3x 5    với trục Ox. Trong các phát biểu sau,phát biểu nào sai ? A. 0 45   . B. 0 90   . C. 0 90   . D.    . Câu 4: Một hình trụ có chiều cao là 6cm và diện tích xung quanh là 2 36 cm  . Khi đó, hình trụ đã cho có bán kính đáy bằng A. 6 cm. B. 3 cm. C. 3  cm. D. 6cm. PHẦN 2 – Tự luận (9điểm): Câu 1. (1,5 điểm) Cho biểu thức : 3 x 1 1 1 P : x 1 x 1 x x             với x 0 và x 1   1) Rút gọn biểu thức P. 2) Tìm x để 2P – x = 3. Câu 2.(2 điểm) 1) Trên mặt phẳng với hệ tọa độ Oxy cho điểm M có hoành độ bằng 2 và M thuộc đồ thị hàm số 2 y 2x   . Lập phương trình đường thẳng đi qua gốc tọa độ O và điểm M ( biết đường thẳng OM là đồ thị hàm số bậc nhất). 2) Cho phương trình   2 x 5x 1 0 1    . Biết phương trình (1) có hai nghiệm 1 2 x ;x . Lập phương trình bậc hai ẩn y ( Với các hệ số là số nguyên ) có hai nghiệm lần lượt là 1 2 1 2 1 1 y 1 và y 1 x x     Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only. www.vnmath.com www.vnmath.com Trang 2 Câu 3.(1,0 điểm) Giải hệ phương trình: 3 2 17 x 2 y 1 5 2x 2 y 2 26 x 2 y 1 5                  Câu 4.(3,0 điểm): Cho đường tròn (O; R). Lấy điểm M nằm ngoài (O;R) sao cho qua M kẻ được hai tiếp tuyến MA, MB của (O;R) và góc AMB nhọn ( với A, B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt đường tròn (O;R) tại N (khác A). Đường tròn đường kính NA cắt các đường thẳng AB và MA theo thứ tự tại I và K (khác A). 1) Chứng minh tứ giác NHBI là tứ giác nội tiếp. 2) Chứng minh tam giác NHI đồng dạng với tam giác NIK. 3) Gọi C là giao điểm của NB và HI; gọi D là giao điểm của NA và KI. Đường thẳng CD cắt MA tại E. Chứng minh CI = EA. Câu 5.(1,5 điểm) 1) Giải phương trình :       2 2 x x 9 x 9 22 x 1     2) Chứng minh rằng : Với mọi 2 3 2 3 1 1 x 1, ta luôn có 3 x 2 x x x                 . HẾT Gợi ý Câu 3.(1,0 điểm) Giải hệ phương trình: 3 2 17 x 2 y 1 5 2x 2 y 2 26 x 2 y 1 5                  ĐKXĐ: x 2;y 1    3 2 17 3 2 17 3 2 17 x 2 y 1 5 x 2 y 1 5 x 2 y 1 5 2x 2 y 2 26 2(x 2) 2 (y 1) 3 26 2 3 26 2 1 x 2 y 1 5 x 2 y 1 5 x 2 y 1 5                                                        Câu 5.(1,5 điểm) 1) Giải phương trình :       2 2 x x 9 x 9 22 x 1                   2 2 2 2 2 2 x 9 x 9x 22 x 1 x 9 x 9 9 x 1 22 x 1                 Đặt x – 1 = t; 2 x 9  = m ta có: 2 2 2 2 m 9mt 22t 22t 9mt m 0       Giải phương trình này ta được m m t ;t 2 11     Với 2 2 m x 9 t ta có: x 1 x 2x 11 0 vô nghiêm 2 2         Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only. www.vnmath.com www.vnmath.com Trang 3 2 2 1 2 1 2 1 2 1 O E D C K I N H B A M  Với 2 2 m x 9 t ta có: x 1 x 11x 2 0 11 11           121 8 129     > 0 phương trình có hai nghiệm 1,2 11 129 x 2    Vậy phương trình đã cho có 2 nghiệm phân biệt 1,2 11 129 x 2    2) Chứng minh rằng : Với mọi 2 3 2 3 1 1 x 1, ta luôn có 3 x 2 x x x                 (1) 2 3 2 2 3 2 2 2 1 1 1 1 1 1 3 x 2 x 3 x x 2 x x 1 x x x x x x 1 1 1 3 x 2 x 1 (vì x 1 nên x 0) (2) x x x                                                             Đặt 2 2 2 1 1 x t thì x t 2 x x      , ta có (2)     2 2t 3t 2 0 t 2 2t 1 0         (3) Vì   2 2 1 x 1 nên x 1 0 x 1 2x x 2 hayt 2 x           => (3) đúng . Vậy ta có đpcm Câu 4.(3,0 điểm) Cho đường tròn (O; R). Lấy điểm M nằm ngoài (O;R) sao cho qua M kẻ được hai tiếp tuyến MA, MB của (O;R) và góc AMB nhọn ( với A, B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt đường tròn (O;R) tại N (khác A). Đường tròn đường kính NA cắt các đường thẳng AB và MA theo thứ tự tại I và K (khác A). 1) Chứng minh tứ giác NHBI là tứ giác nội tiếp. 2) Chứng minh tam giác NHI đồng dạng với tam giác NIK. 3) Gọi C là giao điểm của NB và HI; gọi D là giao điểm của NA và KI. Đường thẳng CD cắt MA tại E. Chứng minh CI = EA. 1)   0 NIB BHN 180   NHBI   nội tiếp 2) cm tương tự câu 1) ta có AINK nội tiếp       1 1 1 1 2 2 2 2 Ta có H B A I I B A K         3) ta có:     1 2 0 1 2 I I DNC B A DNC 180         Do đó CNDI nội tiếp   2 2 2 D I A      DC//AI Lại có   1 1 A H AE / /IC   Vậy AECI là hình bình hành =>CI = EA. Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only. . SỞ GIÁO DỤC – ĐÀO TẠO NAM ĐỊNH ĐỀ THI TUYỂN SINH LỚP 10 TRƯỜNG THPT CHUYÊN NĂM HỌC 2011 – 2012 Môn: TOÁN ( chung) ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút Đề thi gồm 02 trang PHẦN. cạnh MN; MP. Biết  0 MNP 50  . Khi đó, cung nhỏ EF của đường tròn (O) có số đo bằng: A. 0 100 . B. 0 80 . C. 0 50 . D. 0 160 . Câu 3: Gọi  là góc tạo bởi đường thẳng y x 3   với

Ngày đăng: 12/08/2014, 01:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w