1. Trang chủ
  2. » Tất cả

Một số phương pháp giải các chủ đề căn bản hình học 12 phần 2

20 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 2,99 MB

Nội dung

Bai tap 7: Mot hinh tru c6 ban Icinh day R va duong cao 2R Goi M , N Ian luot la diem bat ky tren day Tim gia tri Ion nhat cua doan M N HD-DS m qua2RV2 Bai tap 8: Mot hinh non c6 ban kinh day R va chieu cao bang 4R Tinh ban kinh day r va chieu cao h cua hinh tru noi tiep hinh non de dien tich toan phan cua hinh tru dat gia tri Ion nhat HDDS 4R Stp dat gia tri Ion nhat r = — R va h = CHU D E I X _ T06 t>0 KHONG Glf!N DANG TOAN TOA DO DIEM VA VECTd • Toa khong gian * > Ba vectadan vi i, j , k tren true Ox, Oy, Oz: i=(l;0;0), ]=(0;1;0), M k=(0;0;l) > M(x,y,z) hay M (x,y,z): y OM = X i + y j +z.k J > / >y a(x,y,z) hay a =(x,y,z): a = x.i + y j + z.k Phep toan vector Cho hai vecta: u = (x,y,z) va v = (x',y',z') thl: u ±v = (x±x';y ±y'; z ±z'); ku = (kx; ky, kz) -4? X- u.v =• xx' + yy'+ zz', cos(w,v) +y^ +z^ x.x+y.y+z.z ylx'+y'+z\^x"+y"+z" Cho hai diem A(xi, yi, zi) va B(x2, y2, 22) thl: AB = (X2 -xi; y2 -yi, Z2 -z,) 159 AB = ^{x,-xy+(y,-yy-+{z,-zy- Mchia AB theo tik ^ 1: M X| -kx^ ^ \-k ' y^ -ky-, 1-A: z, -kz, ' 1-A: j Chuy: 1) Gdc A cm tarn gidc ABC: cos A = cos(AB; AC) 2) Tog trung diem M cua doan AB, tdm G ciia tarn gidc ABC, tdm E ciia tu dien ABCD v&i toa doA(xi, y/, z/), B(x2, yi, 22), C(x3, ys, zs), D(x4,y4,Z4): X = X +x X = x^ +X2 + X = y = M y = y ^ G z= z, + z z z=• >'l +>^2 + X l +>'4 Z| + Z, + Z, + Z4 +z,+z z= Bai toan IrChobavecta a = (2;-5; 3), b = ( ; ; - l ) , c = ( ; ; ) a) Tim toa cua vecta e = a - b - c b) Tim toa cua vecto f = a ' - ^ b + c Gidi a) e = a - 4b -2c = ( - - ; - - -14;3 + 4-4) = (0;-27;3) b) f =4a - - b +3c =(8+ + ; - - - +21; + - +6) = (11; - ; — ) ^ 3' Bai toan 2: Tim toa cua vecta m cho biet: a) a + m = 4a va a = (0; -2; 1) b) a + 2m - b va a = (5; 4; -1), b = (2; -5; 3) Gidi a) a + m = a =^ m = a = (0; 6; 3) b) a + m = b = > m = - — a + — b = 2' 2' 2 Bai toan 3: Cho hai bo ba digm:A(l; 3; 1), B(0; 1; 2), C(0; 0; 1) va A ' ( l ; 1; 1;), B'(-4; 3; 1), C'(-9; 5; 1) Hoi bo ba dilm nao thing hang? Gidi Taco CA = ( ; ; ) , CB = (0; 1; 1) 160 Vi cac toa dp khong tuomg ung ti le nen khong c6 s6 k nao d^ CA = k CB, suy A, B, C khong thang hang Taco C A ' =(10; -4; 0), C B ' = (5;-2; 0) => C A ' = C B ' Do A', B' C thing hang Bai toan 4: Tinh tich v6 huong cua hai vecta moi truong hop sau: a) a = (3; 0; -8), b = (2; -7; 0) b) a = ( l ; - ; ) , b =(4; 3;-5) c) a = ( ; V ; V ) , b = ( ; V ; - V ) Gidi a) a b = 3.2 + 0.(-7) + (-8).0 = b) a b = 1.4 + (-5).3 + 2(-5) = -21 c) a b = + V2 V3 + V3(-V2) = Bai toan 5: Cho ba vccto: a =(1;-1;1), b = ( ; ; - l ) , c = (3; 2;-1) Tinh: a) ( a b ) c , a ( b c ) b) a l b + b ^ c a + c ^ a , a c + b ^ - c l Gidi a) Taco: a b = 1.4 + (-l).0+ l.(-l) = D o d : ( a b ) c = c =(9;6;-3) Taco b c =4.3 + 0.2 + (-l)(-l)= 13 Dodo a ( b c ) = 13a =(13;-13; 13) b) Tac6 a^ = b ^ = 17, c^ = 14nen a l b + b l c + c l a - b + 17c + ul = (77; 20;-6) vaa.c = 0=>4a.c + b -5c 53 27t = 2, Bai toan 6: Cho = 5, goc giUa hai vecta u va v bang — Dat p = ku + 17v v a q = u - v Tim k de vecta p vuong goc vol vecta q Gidi Fa CO = = 5, cos(u, v) = cos 2^ = '2 Do p q o p q = 0\,y > , z > va x + y + z = 22 Chung minh bat dang thuc yjx-1 + 2-^y-2 + 3yjz-3 < 14 Cf/di Trong khong gian Oxyz, xet vecta M = (l;2;3);v = (Vx^;7>^^-^;Vz^) M ( x ; y; 0) va diem c6 dinh A ( l ; -3; 3), B(2; - ; -5) a khac phia vai mp(Oxy) Ta c6: M.V = | M | | v | C O S ( M ; V ) hay i nen ^ + 2^y-2+3y[7^ | M.V | ' - + ^ ^ < V M V M = DANG TOAN TICK CO Hl/OfNG r/c/i CO hu&ng: Tick CO huang ciia hai vecta a = (x,y,z) va b ^ (xy'z) va CO toa do: y [a,h] m X Z vy Dinh thuc X z' x' ^' y y X' la mot vecta, ky hieu = iyz'-zy'; zx'-xz'; xy'-yx') n = PP mq-np q q Kit qua: - Vecta [a, h\ chung vai a, b 164 - Do dai ciia vecta [ a , A ] ; \ a, h ] | = | sin( a, b) -2 vecta a, h cungphuang: [ a, h ] = -3 vecta a, h, c dongphdng: { a, b ].c = -3 vecta a,h,c khongddngphdng: [ a,b ].c Dim tich vathitich Dien tich tarngidc ABC: S = - [AB, AC] The tich tit dien A BCD: V = [AB ,AC ].AD The tich hinh hop ABCD.A 'B'C'D':V= [AB, AD^AA The tich hinh Idng tru ABCA "B'C: V = ^ [AB, AC] AA Chiiy: 1) Ba vecta dan vf i, j , k tren true Ox, Oy, Oz: i =(1:0:0), "j =(0:1:0), k =(0:0:1) 2) Khodng each giira hai diemA(xi, yi zi) vd B(x2, y2, ^2): AB = 7U, - X , ) - +{y,-y,)- +(Z2-z,f 3) G6c giua hai vecta: u = (x,y,z) va v = cos(w,v) = (x'y'z): x.x+y.y+z.z + y~ + z\^jx'^+y'^+z' Bai toan 1: Tim tich c6 huong cua cac cap vecta: a)fl=(l;3;-2)va6=(2;-l;4) a) Tich CO huong cua cap vecta la: f -2 -2 [a,b] = 4 V- b ) a = ( l ; - ; ) v a f t =(5;1;4) Giai 1J \ 4/ = (10;-8;-7) 165 b) Tich CO huong cua cap vecta la: ^ [a,b]= ^ ^ ^ (-2 ; ; 1-2^ J =(-ll;ll;ll) ^ Bai toan 2: Tim tich c6 huong cua cac cap vecto don vi: a) / = (1 ;0;0) va } = (0; ;0) b) } = (0; ;0) va ^ = (0;0; 1) Gidi a) Tich CO huong cua cap vecto la: / V 0 0 1 \ 1/ = (0;0;1)= k b) Tich CO huong cua cap vecto la: 0 0 1 0' 0 = (1;0;0)= / Bai toan 3: Xet su dong phang cua ba vecto a) a - ( - ; l ; - ) , b = ( ; 1; 1), c = (-2; 2; 1) b) a = ( ; ; ) , b = ( ; - l ; ) , c = ( l ; ; l ) Gidi -3 a) Ta CO [ a , b ] = -2^1 1 = (3;l;-4) D o d [ a , b ] c =-6 + - = - ^ Vay vecto khong dong phang b ) T a c [ a , b ] = ( ; ; - ) ^ [ i , b].c = Vay vecto dong phang Baitoan4:Cho a = ( ; - ; 1), b =(0; 1;2), c = (4; 2; 3) va d = (2; 7; 7) a) Chung minh cac vecto a , b , c khong dong phang b) Hay bieu thi vecto d theo cac vecto a , b , c Gidi a)Tac6[a, b ] = (-3;-2; l ) = > [ a , b ] c =-13:i^0 Vay vecto khong dong phSng b) Gia su d = ma + nb + pc n =3 - m + n + 2p = m = -2 m + 4p = m + 2n + 3p = p =l Vay d - - a + b + c 166 Bai toan 5: Trong Ichong gian Oxyz clio ba diem A ( l ; 2; 4), B(2; - ; 0), C(-2; 3; -1) Goi (x; y; z) la cac toa cua diem M nam tren mat phang ( A B C ) T i m sir lien he giua x, y, z Giai AB = ( l ; - ; - ) , A C (-3; l ; - ) , A M = (x - 1; y - 2; z - 4) Ta C O M nam trcn mat phang (ABC) [ A B , A C ] A M = 19(x - 1) + 17(y - 2) - 8(z - 4) = « 19x + 17y - 8z - 21 = Vay quan he la 19x + 17y - 8z - 21 = Bai toan 6: Chung minh cac tinh chat sau day cua tich c6 huong: a)la,i]=0 b ) [ i , b] = -[b, a] Gidi Goi vecta a = ( x i , y i , zi) va b = (x2, y2, zi) c a) [ a , a ] = = (0; 0; ) = Yi b) [ a , b ] = yi Yi X2 Y2 ^2 = (yiZ2 = -(Y2Z1 Y2 V YI \ X| / - y Z i ; Z | X 2- Z2Xi; X i y - Y1Z2; X2yi) Z2X1 - Z X ; X y i - xiy2) \ Z2 Z2 ^2 z, Z, ^2 y2 X| Y, -[b,a] / Ket qua [ a , a ] = - [ a , a ] = ^ [ a , a ] = Bai toan 7: Chung minh cac tinh chat sau day ciia tich c6 huang: a)[ka, b] = k [ i , b] = [ i , k b ] b) [a.b] _ -(a.b)l Gidi a) Goi vecta a = ( x i , y i , zi) va b = ( X , y , Z ) k[a, b ] = Yi k V Y2 z, Z, ,k Z, Z2 f ky, kz, V Y2 z^ X, ,k X j kz, kx Z2 ^2 X| YI X2 Y2 J kx, ky X2 Y2 \ = [ka,b] Tuang tu: k [ a , b ] = [ a , k b ] 167 b) VP = ^-(a.b)^=^ b ^.cos^a b P(l -cos^a) = •^sin^a = [ a b ] P = VT Bai toan 8: Chung minh cac tinh chat sau day cua tich c6 huong: a)[c, a + b] = [c, a] + [c, b] b) a [ b , c ] = [ i , b ] c Giiii Goi vecta a = ( x i , y i , Z | ) ; b = ( x , y2, zj) va c = (X3, ys, Z3) a) Ta CO [ c, a + b ] ^2 y.-t y., z,+Z2 y,+y2 + V yi y, Z, + Z , Z3 z z, X, z, yi X3 X, + y3 X, X, + x Z3 Z, X3 X, X3 X1+X2 X3 y? V yj X3 Yj y,+y2 y3 + Xi yi X2 X3 Zj + X, y2 y3 X3 X, z y2 X2 = [c,a] + [c,b] b) a [ b c ] = X X|| z, z y2 x + z, +yi Z] yi Z3 y3 X3 Z3 X3 Z, +y3 y2 Z2 X| Z, X2 y2 y, X3 Xi +Z3 Xj yi X2 =[a.b]c y2 Bai toan 9: Trong khong gian cho ba vecta a , b , c timg doi khong cung phuang Chung minh rang dieu kien can va du de vecta tong: a + b + c = 1a[a,b] = [ b , c ] = [c,a] Gidi Tira + b + c = = > a = - ( b + c ) = > [ a , - b - c ] = D o d [ a , - b - c ] = [ a , - b j - [ a , c ] = =>[c, a ] = [ a , b ] Tuong tir ta cung CO [ b , c ] = [ a , b ] Vay: [ a , b ] = [ b , c ] = [ c , a ] Ngugc l a i , t u [ a , b ] = [ b , c ] [ b , a + c] = Matkhac, [ b , b ] = = > [ b , a + b + c ] = => b cung phuang v a i vecta a + b + c Chung minh tuong t u ta ciing c6 vecto a ciing phuong v o i vecta a + b + c Nhung a va b khong cung phuang, vay: a + b + c = 168 DANG TOAN CAC DAI LlTtfNG HINH HOC • - Khodng each giita hai diem A(xi, yi, zi) va Bfxi, yi, zj): AB = ^{x,-x,y- +{y, - J , ) - + ( z , - z , ) ' - Gck giita hai vecia u = (x,y,z) va v = (x',y',z): x.x'+y.y'+z.z' COS(M, V ) = • + y ' +z -\^x"+y"+z" - Goc cua tarn gidc ABC: cos A = cos{AB, - Dien tich tarn gidc ABC: = - The tich lit dien A BCD: V = The tich hinh hop ABCD.A AC) [AB, AC] [AB, AC ] AD 'B'CD':V= \AB, AD] AA' Bai toan 1: Tinh cosin cua goc giiia hai vecta u va v moi truong hop sau: a) li = ( ; 1; 1); v -(2; 1;-1) b) u =3i + 4T; v - - +3k Gidi xx'+y.y'+z.z' a) cos(u,v) = yjx- +y~ +7? x'- +y'- +z'' b)Tac6 u = ( ; ; ) , v = ( ; - ; ) c o s ( u , v ) = Baitoan2: Chocacvecta: u = i - j ; v = i + ( j -8V13 65 - k); w = i - k +3 j a) Tim cosin cua cac goc ( v , i ), ( v , j ) va ( v , k ) b) Tinh cac tich v6 huong u v , u w , v w Gidi a) u = ( ; -2; 0), v = (3; 5; -5), w = (2; 3; -1) Va cac vecta dom v i T = ( ; 0; 0), f = (0; 1; 0), k = (0; 0; 1) nen cos(v,i) = v.i cos(v,j) = V.J V59 169 b) Ta CO u V = x.x' + y.y' + z.z' = -7 Tuang tir thi dugc u w = -4, v w =26 Bai toan 3: Cho vecta u y khac Chung minh rSng: cos~( u i ) + cos'^( u , j ) + cos^( u , k ) = vai / ; / va la cac vecta dan vi Gidi Cac vecta dan vi: / =(1;0;0); } = (0;l;0)va k =(0;0;1) „., ^ , ^ r, u.i Gia su u = (x; y; z) ta co: cos(u,i) = X + z^ Do d6cos"(u,i) = ~ X" •> -> • + y" + z" Tuong tir: cos"(u.j) = — ; cos^(u,k)= , ^\ x~+y+z x"+y"+z Tu suy dieu phai chimg minh Bai toan 4: Cho hinh binh hanh ABCD vai A(-3; -2; 0), B(3; -3; 1), C(5; 0; 2) Tim toa dinh D va tinh goc giiJa hai vecta AC va B D Gidi Taco BA =(-6; I ; - ! ) BC = ( ; 3; 1) Vi toa cua hai vecta khong ti le nen ba diem A, B, C, khong thang hang Goi D(x; y; z) Tu giac ABCD la hinh binh hanh va chi x +3 =2 AD = BC « x= -l « y = l VayD(-l;l;l) y+2=3 z =1 z =l Ta CO AC = (8; 2; 2), BD = (-4; 4; 0), do: cos( A C , BD) = -32 + V72.V32 • V a y ( A C , B D ) = 120° Bai toan 5: Tim toa diem M : a) Thuoc true Ox cho M each dku A ( l ; 2; 3) va B(-3; -3; 2) b) Tren mat phSng (Oxz) cho M each d^u ba dikm A ( l ; 1; 1), B ( - l ; 1; 0), C(3;l;-1) 170 Gidi a) M thuoc Ox nen M(x; 0; 0) Ta CO M A = M B » o MA^ = MB^ (1 - x)^ + ' + 3^ = (-3 - x)^ + (-3)^ + 2^ » X = -1 Vay M ( - : ; 0) b) M thuoc (Oxz) tren M ( x ; 0; z) Ta c6: M A = M B = M C A M ' = BM" AM' =CM- • ( x - l ) ' + l + ( z - l ) - = ( x + l ) - + l + z' [ ( x - l ) ' + l + ( z - l ) ' = ( x - ) " + l + (z + l ) ' x =— VayM 4x-4z = z= — Bai toan 6: Cho tam giac A B C c6 A ( - ; 1; 0), B(0; 3; -1), C ( - l ; 0; 2) 4x-2z = l a) Chung minh tam giac A B C c6 goc B nhon b) T i m toa diem H la hinh chieu cua A tren canh BC Gidi a) Ta CO B A = (-2; -2; 1), BC = (-1; -3; 3) Nen cosB = BA.BC 11 B A BC 3Vl9 > => goc B nhon b) H(x; y; z) thuoc BC nen B H = t B C Do Ta CO X = -t,.y - = -3t, z + = 3t => x = -t, y = - 3t, z = -1 + 3t A H BC nen A H BC = (-t + ) ( - l ) + (-3t + 2)(-3) + (z + 1)3 = ^ t = Vay hinh chieu H U 11 24 14 ' ' Bai toan 7: Cho ba d i l m A ( ; ; 0), B(0; 0; 1), C(2; 1; 1) a) Chung minh A , B, C khong thang hang b) Tinh chu v i , dien tich va dp dai duong cao cua tam giac A B C ve tir dinh A Tinh cosin cac goc cua tam giac A B C Gidi a) Ta CO B A = ( ; 0; -1), BC = (2; 1; 0), toa dp hai vecta khong t i le nen chiing khong cung phuong Vay ba diem A , B , C khong thang hang 171 b) AB = +0' + ( - ! ) ' = V2 , BC = V2' + ' +0' = VS AC = V l ' + ' +1' = V3 Vay chu vi tam giac ABC bang V2 + V3 + Vs Vi BC^ = AB^ + AC'^ nen tam giac ABC vuong tai A do dien tich: S=iAB.AC=^ 2 BC Vi tam giac ABC vuong tai A nen: — Ta CO SABC = " BC.hA = ^ hA = = cosA = 0, cosB = = ,cosC = =^ BC V5 BC V5 Bai toan 8: Trong khong gian toa Oxyz, cho tam giac ABC c6 A ( l ; ; - ) , B ( ; - l ; ) , C(-4; 7; 5) a) Tinh dien tich va dai duong cao hA ciia tam giac ve tu dinh A b) Tinh dai duong phan giac cua tam giac ve tir dinh B Gidi a) Ta CO A B = (1; -3; 4), AC = (-5; 5; 6), BC = (-6; 8; 2) [ A B , A C ] = (-38;-26;-10) Vay SABC 2S AB,AC = - V ' + ' + ' =V554 2V554 V277 va hA BC Vi04 Vl3 • b) Goi D(x; y; z) la chan duong phan giac ve tir B: ^ D A ^ BA ^ V26 ^ Ta CO DC BC Vi04 Vi D nam giiia A, C nen X= — 2(l-x) = x + DA = - - DC A B / / C D Vay A B C D la hinh thang [AB, AC]| + i | [ A D A C ] I = 3^1046 Bai toan 11: Cho bon d i l m A ( 1; 0; 0) B(0; 1; 0), C(0; 0; 1) va D(-2; 1; -2) a) Chung minh rang A , B, C, D la bon dinh cua mot hinh t u dien b) Tinh goc giiia cac duang thang chua cac canh doi cua tu dien c) Tinh the tich t u dien A B C D va dai duong cao cua t u dien ve t u dinh A Gidi a)Tac6: A B = ( - ; 1;0), A C = ( - l ; ; 1) A D = ( - ; l ; - ) nen | A B A C ] = V0 0 -1 -1 1 -1 -1 \ = (l;l;l) / Do [ A B , A C ] A D = -3 + - = -4 ^ 0, suy ba vecta A B , A C , A D khong dong phang Vay A , B C, D la bon dinh cua mot hinh tu dien b) Taco C D = ( - ; l ; - ) BC = ( ; - ; 1), B D = (-2; 0;-2) 173 Goi a, y Ian lugt la goc tao bai cac cap duomg thang: A B va C D , A C va BD, A D va BC thi ta c6: cosa = cos(AB,CD) = c o s p = cos(AB,CD) cosy = cos(AB.CD) + l + 0| V2.Vr4 + SA/T? 14 0-2 V2.V8 = 3Vi7 -1-2 ^/2.^/l4 c) The tich t u dien A B C D la V = 14 AB,AB AD _ ~ 3V 3V Do dai duang cao ve tir dinh A la: hA S 2V3 BC, B D Bai toan 12: Cho t u dien A B C D c6: A ( - l ; 2; ) , B(0; 0; 1), C(0; 3; ) , D(2; 1; ) a) l i n h dien tich tarn giac A B C va the tich t u dien A B C D b) rim hinh chieu cua D len mat phSng ( A B C ) Giai a ) T a c A B = { ; - ; 1), A C = ( ; ; ) , A D n e n j A B A C ] = (-1; ; ) ^ S A H C = ^ V a ( A B , ACJ.AD = ^ = > V A i c n = =(3;-l;0) [AB, AC] [AB.ACJ.AD V6 =- b) Goi H(x; y; z) la hinh chieu D tren mat phdng ( A B C ) t h i : A H = ( X + 1; y - 2; z), D H = ( X - 2; y - 1; z) Ta c6: X AB,AC A H = X DH.AC = X - DH.AB = X = 2y + z = + y= E(5;-|:3) Bai toan 4: Cho b6n di§m A(-3; 5; 15), B(0; 0; 7), C(2; - ; 4), D(4; -3; 0) Chung minh hai duong thang A B va CD cat nhau, hay tim toa giao diem Gidi Taco: AB =(3;-5;-8) AC =(5;-6;-11) AD = (7; -8; -15) CD = (2; -2; -4) Do l A B , AC I = (7; -7; 7) =^ [ A B A C ] AD = nen AB, CD dong phang hon nxxa A B , CD khong cung phuong, do duong thang AB va CD cat Goi M(xvi; yvi ZM) la giao diem cua AB va CD Dat M A = k M B , MC = k ' M D Ta c6: lex Ic X X» Xv, = — (1 1-k X = ~ 1-k' |A ~ 1-k 2-4k' 1-k' 176 ^YA-ky,, ^Yc-k'yp ^ 1-k ^ 1-k' 1-k' 15-7k _ 1-k' Giai duac k' = — nen M 11 ^ - l + 3k' 1-k -kz^ ^ y^.-k'Zp ^ 1-k 1-k - k' - J ' ;ii Bai toan 5: Cho hai diSm A ( ; 5; 3), B(3; 7; 4) T i m diSm C(x; y; 6) d l A , B , C liiang hang Giai x-2 =k Ta CO A , B, C thdng hang A C = k A B « • y - = 2k 3= k x =5 « y = ll k =3 Vaydigm C(5; 11; 6) Bai toan 6: Cho tarn giac A B C vuong a A biSt A ( ; 2; -1), B(3; 0; 2), C(x; -2; 1) a) Tim tarn va ban kinh ducmg tron ngoai tiep tarn giac A B C b) T i m dai duong cao ciia tam giac A B C ve t u dinh A Giai a) Tam giac A B C vuong tai A nen A B ^ + AC^ = BC^ Ma AB^ = + + - 14, AC^ = (x - 4)^ + 16 + = (x - 4)^ + 20 BC^ = ( x - 3)^ + + = (x - 3)^ + => X = 18 => C(18; -2; 1) Tam ducmg tron ngoai tiep I la trung diSm cua BC r2i 3^ Nen I — ; - l ; ' 2? / va ban kinh R = BC V230 2 b) Tam giac A B C vuong tai A , duong cao A H nen A H B C = A B A C AH = AB.AC 6V4830 BC 115 Bai toan 7: Cho hai di^m A ( ; 0; -1), B(0; -2; 3) a) T i m toa diem C e Oy de tam giac A B C c6 dien tich bang VTl va thoa man OC < 1.' ' b) T i m toa diem D e (Oxz) de A B C D la hinh thang c6 canh day A B Giai a) Goi C(0; y; 0) ^ A B = (-2; -2; 4), A C = (-2; y; 1) 177 Taco: SABC = V u ^ | [ A B , A C ] | = « VTl^V(2+4y)- +36+(2y+4)' ^VTl 20y^ + 32y + 12 = o y = -1 (loai) vi OC < hoac Y = - | (nhan) VayC(0;-|;0) b) Goi D(x; 0; z) G (OXZ) => D C = (-x; -1; -z) A B C D la hinh thang va chi A B , D C cung huong - X -1 - z > < : ^ x = l , z = -2 -2 -2 VayD(l;0;-2) Bai toan 8: Cho tu dien ABCD c6: A(2; 1; -1), B(3; 0; 1), C(2; - ; 3) va D thuoc true Oy Tim toa dp dinh D biet VABCD = Gidi Goi D(0; y; 0) thuoc true Oy Ta eo: A B ^ ( M ; 2), A D = (-2; y - ^ ) , ^ C ^ ( ; -2; 4) = > [ A B , A C ] - ( ; -4; -2)=>[AB, A C ] AD =-4(y - 1) - =-4y + Theo gia thiet VABCD = » - [ AB, AC ] AD =5 o - 4y + = 30 o y = -7; y = Vay eo dikm D tren true Oy: (0; -7; 0) va (0; 8; 0) Bai toan 9: Trong khong gian Oxyz, eho digm A ( l ; 0; 3), B(-3; 1; 3), C ( l ; 5; 1) va M(x; y; 0) I Tim gia tri nho nhat T MA ] I + MA+ MC Gidi Goi I la trung diem eua BC: =:>I(-1;3;2)=^ MB + MC = 2MI T = 2(MA + MI) ZA - > va z, = > => A va I nam ve eung phia doi vai mp(Oxy) va M(x; y; 0) thuoe mp(Oxy) nen lay doi xung I ( - l ; 3; 2) qua mp(Oxy) J(-l; 3; -2) ^ M I = MJ ^ T = 2(MA + MJ) ^ 2AJ = V38 r ^ Dau = xay M la giao diem eua doan MJ voi mp(Oxy) la M — ; - ; \ 5 y VayminT = 2V38 178 ... (x2, y2, zi) c a) [ a , a ] = = (0; 0; ) = Yi b) [ a , b ] = yi Yi X2 Y2 ^2 = (yiZ2 = -(Y2Z1 Y2 V YI \ X| / - y Z i ; Z | X 2- Z2Xi; X i y - Y1Z2; X2yi) Z2X1 - Z X ; X y i - xiy2) \ Z2 Z2 ^2. .. yi X2 X3 Zj + X, y2 y3 X3 X, z y2 X2 = [c,a] + [c,b] b) a [ b c ] = X X|| z, z y2 x + z, +yi Z] yi Z3 y3 X3 Z3 X3 Z, +y3 y2 Z2 X| Z, X2 y2 y, X3 Xi +Z3 Xj yi X2 =[a.b]c y2 Bai toan 9: Trong... i , y i , zi) va b = ( X , y , Z ) k[a, b ] = Yi k V Y2 z, Z, ,k Z, Z2 f ky, kz, V Y2 z^ X, ,k X j kz, kx Z2 ^2 X| YI X2 Y2 J kx, ky X2 Y2 \ = [ka,b] Tuang tu: k [ a , b ] = [ a , k b ] 167

Ngày đăng: 05/03/2023, 10:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w