1. Trang chủ
  2. » Tất cả

Toan cao cap UEH Dai Hoc Kinh Te TPHCM

2 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 0,95 MB

Nội dung

1 x x x 3 )9sin( lim 2 3 2 32 8 )2sin( lim x x x 3 1 tan lim 1 x x x 4 1 tan lim 1 x x x 5 1 )1tan( lim 1 x x x 6 2 2 1 tanlim x x x 7 x x x 7tan 2tan lim 2 8 x x x 3sin cos1 lim 1 9 xx x x 3sin 8cos1.

Review Exercises In Problems through 50 evaluate indeterminate forms: sin( x 9) lim x 3 x tan x lim x x tan( x 1) lim x x tan x lim tan x x sin( x 2) x3 x tan x lim x x 1 lim x tan x x lim x 11 13 cos x x sin x lim x arcsin(1 x ) lim x 1 x x 3x x 3x lim ( ) x x 2x x lim x x 15 17 lim (5 x 19 lim 21 23 25 27 10 x x cos x cos x lim x arctan( x 3x 2) 12 lim x x2 x x x x 3x 14 lim ( ) x x x 5x x lim x x 16 3x 2x 14) x 18 ln(1 x ) x sin x 20 lim x (ln(2 x 5) ln x ) 22 x ex lim x x 3x e cos x x lim x ln(1 x ) tan x 24 26 lim (cos x ) sin x x ln(1 arcsin x ) x tan x x ) lim ( x ln x x e tan x lim x sin x e x arctan 3x lim x arcsin x x sin x lim 4x lim x tan x 28 6x2 lim x x ln(1 x ) 30 (1 x )1000 lim x (1 x )1000 29 cos x sin x lim 10 x lim x 4x 1 ln 1  x  arcsin x  31 lim 32 tan3x e  cos x  x lim x  x ln(1  x )  tan x x 0 33 35 lim x 0 37 34 4 x 36  x  arcsin x  cos x tan x  x ln  x  1 lim x 1 tan  x 39 lim x 0 43 lim 1  ln x  lim x ln x lim 42 x 1   lim    x 0 sin x 3x    1 1  lim x sin        x  x 6x  x  44 2ln x lim  e x  x  x x  46 1 ln x 48 2a x  x  a a x a  ax a   sin x Find a,b: lim    1 x 0 x b   x x a 49  ln x  lim 40 x0 47 tan x  x  x arcsin x x  x  45 ln   cos x  x  x  x arctan x  38   lim   cot x  x 0 sin x     lim    x 1  ln x x 1  41 ex  e x 1 x  sin x  ln(1  x)  arctan x lim x 0  x  arctan x  e6 x lim 50   lim    x 0  cos x sin x   x x e  e  2x lim x  x  x ln(1  x ) Find a,b: lim x 0 sin ax  bx  36 x3

Ngày đăng: 22/02/2023, 21:20