TOÁN BỒI DƯỠNG HS GIỎI THCS
WWW.VIETMATHS.COM TOÁN BỒI DƯỠNG HS GIỎI THCS PHẦN I: ĐỀ BÀI Chứng minh số vô tỉ a) Chứng minh : (ac + bd)2 + (ad bc)2 = (a2 + b2)(c2 + d2) b) Chứng minh bất dẳng thức Bunhiacôpxki : (ac + bd)2 (a2 + b2)(c2 + d2) Cho x + y = Tìm giá trị nhỏ biểu thức : S = x2 + y2 a) Cho a 0, b Chứng minh bất đẳng thức Cauchy : b) Cho a, b, c > Chứng minh : a+b ≥ ab bc ca ab + + ≥a+b+c a b c c) Cho a, b > 3a + 5b = 12 Tìm giá trị lớn tích P = ab Cho a + b = Tìm giá trị nhỏ biểu thức : M = a3 + b3 Cho a3 + b3 = Tìm giá trị lớn biểu thức : N = a + b Cho a, b, c số dương Chứng minh : a3 + b3 + abc ab(a + b + c) Tìm liên hệ số a b biết : a + b > a − b a) Chứng minh bất đẳng thức (a + 1)2 4a b) Cho a, b, c > abc = Chứng minh : (a + 1)(b + 1)(c + 1) 10 Chứng minh bất đẳng thức : b) (a + b + c)2 3(a2 + b2 + c2) a) (a + b)2 2(a2 + b2) 11 Tìm giá trị x cho : a) | 2x | = | x |b) x2 4x c) 2x(2x 1) 2x 2 12 Tìm số a, b, c, d biết : a + b + c2 + d2 = a(b + c + d) 13 Cho biểu thức M = a2 + ab + b2 3a 3b + 2001 Với giá trị a b M đạt giá trị nhỏ ? Tìm giá trị nhỏ 14 Cho biểu thức P = x2 + xy + y2 3(x + y) + CMR giá trị nhỏ P 15 Chứng minh khơng có giá trị x, y, z thỏa mãn đẳng thức sau : x2 + 4y2 + z2 2a + 8y 6z + 15 = 16 Tìm giá trị lớn biểu thức : A = x − 4x + 17 So sánh số thực sau (khơng dùng máy tính) : a) + 15 b) 17 + + 45 c) 23 − 19 27 d) 18 Hãy viết số hữu tỉ số vô tỉ lớn nhng nhỏ 19 Giải phương trình : 3x + 6x + + 5x + 10x + 21 = − 2x − x 20 Tìm giá trị lớn biểu thức A = x2y với điều kiện x, y > 2x + xy = 1 1 + + + + + 1.1998 2.1997 k(1998 − k + 1) 1998 − 1998 Hãy so sánh S 1999 21 Cho S = SEE ON WWW.VIETMATHS.COM WWW.VIETMATHS.COM TOÁN BỒI DƯỠNG HS GIỎI THCS 22 Chứng minh : Nếu số tự nhiên a khơng phải số phương a số vô tỉ 23 Cho số x y dấu Chứng minh : x y + ≥2 y x x y2 x y b) + − + ≥ x y x y a) x4 y4 x y2 x y c) + − + + + ≥ x y x y x y 24 Chứng minh số sau số vô tỉ : a) 1+ b) m + với m, n số hữu tỉ, n n 25 Có hai số vô tỉ dương mà tổng số hữu tỉ không ? x y x y2 + + ≥ 3 + y x y x x y2 z2 x y z 27 Cho số x, y, z dơng Chứng minh : + + ≥ + + y z x y z x 26 Cho số x y khác Chứng minh : 28 Chứng minh tổng số hữu tỉ với số vô tỉ số vô tỉ 29 Chứng minh bất đẳng thức : a) (a + b)2 2(a2 + b2) b) (a + b + c)2 3(a2 + b2 + c2) c) (a1 + a2 + + an)2 n(a12 + a22 + + an2) 30 Cho a3 + b3 = Chứng minh a + b 31 Chứng minh : [ x ] + [ y] ≤ [ x + y] 32 Tìm giá trị lớn biểu thức : A = 33 Tìm giá trị nhỏ : A = x − 6x + 17 x y z với x, y, z > + + y z x 34 Tìm giá trị nhỏ : A = x2 + y2 biết x + y = 35 Tìm giá trị lớn : A = xyz(x + y)(y + z)(z + x) với x, y, z ; x + y + z = 36 Xét xem số a b số vơ tỉ khơng : a số vô tỉ b a b) a + b số hữu tỉ (a + b 0) b a) ab c) a + b, a2 b2 số hữu tỉ (a + b 0) 37 Cho a, b, c > Chứng minh : a3 + b3 + abc ab(a + b + c) 38 Cho a, b, c, d > Chứng minh : SEE ON WWW.VIETMATHS.COM a b c d + + + ≥2 b+c c+d d+a a+b WWW.VIETMATHS.COM TOÁN BỒI DƯỠNG HS GIỎI THCS 39 Chứng minh [ 2x ] [ x ] [ x ] + 40 Cho số nguyên dương a Xét số có dạng : a + 15 ; a + 30 ; a + 45 ; ; a + 15n Chứng minh số đó, tồn hai số mà hai chữ số 96 41 Tìm giá trị x để biểu thức sau có nghĩa : A= x − B= x + 4x − C= x − 2x − D= 1− x − E= x+ + −2x x G = 3x − − 5x − + x + x + 42 a) Chứng minh : | A + B | | A | + | B | Dấu = ” xảy ? b) Tìm giá trị nhỏ biểu thức sau : M = x + 4x + + x − 6x + c) Giải phương trình : 4x + 20x + 25 + x − 8x + 16 = x + 18x + 81 43 Giải phương trình : 2x − 8x − x − 4x − = 12 44 Tìm giá trị x để biểu thức sau có nghĩa : A = x2 + x + E= B= 2x + + x 45 Giải phương trình : 1 − 3x G= C = − − 9x x + x−2 x −4 D= x − 5x + H = x − 2x − + − x x − 3x =0 x −3 46 Tìm giá trị nhỏ biểu thức : A = x + x 47 Tìm giá trị lớn biểu thức : B = − x + x +1 ; b) − 13 + n+1 − n (n số nguyên dương) 48 So sánh : a) a = + b= −1 c) n + − n + 49 Với giá trị x, biểu thức sau đạt giá trị nhỏ : A = − − 6x + 9x + (3x − 1) 50 Tính : a) 4−2 b) 11 + c) d) A = m + 8m + 16 + m − 8m + 16 27 − 10 e) B = n + n − + n − n − (n > 1) 51 Rút gọn biểu thức : M = 41 45 + 41 + 45 − 41 52 Tìm số x, y, z thỏa mãn đẳng thức : (2x − y)2 + (y − 2)2 + (x + y + z)2 = 53 Tìm giá trị nhỏ biểu thức : P = 25x − 20x + + 25x − 30x + 54 Giải phương trình sau : SEE ON WWW.VIETMATHS.COM WWW.VIETMATHS.COM TỐN BỒI DƯỠNG HS GIỎI THCS b) x − + = x a) x − x − − x − = d) x − x − 2x + = c) x − x + x + x − = x + 4x + + x − = e) h) x − 2x + + x − 6x + = g) x − + x − = −5 i) x + + − x = x − 25 k) x + − x − + x + − x − = l) 8x + + 3x − = 7x + + 2x − 55 Cho hai số thực x y thỏa mãn điều kiện : xy = x > y CMR: x + y2 ≥2 x−y 56 Rút gọn biểu thức : a) 13 + 30 + + b) m + m − + m − m − c) + + + + + + − + + 57 Chứng minh 2+ = 58 Rút gọn biểu thức : a) C = 6+2 ( d) 227 − 30 + 123 + 22 + 2 ) + 3+ − 6−2 ( 6− 3+ ) b) D = 9−6 − 59 So sánh : a) + 20 1+ b) 17 + 12 +1 c) 28 − 16 − 60 Cho biểu thức : A = x − x − 4x + a) Tìm tập xác định biểu thức A b) Rút gọn biểu thức A 61 Rút gọn biểu thức sau : a) 11 − 10 c) b) − 14 + 11 + − + + + − + 10 62 Cho a + b + c = ; a, b, c Chứng minh đẳng thức : 1 1 1 + 2+ = + + a b c a b c 63 Giải bất phương trình : x − 16x + 60 < x − 64 Tìm x cho : x − + ≤ x 65 Tìm giá trị nhỏ nhất, giá trị lớn A = x2 + y2 , biết : x2(x2 + 2y2 3) + (y2 2)2 = (1) 66 Tìm x để biểu thức có nghĩa: a) A = x − 2x − 67 Cho biểu thức : A = b) B = 16 − x + x − 8x + 2x + x + x − 2x x − x − 2x − x − x − 2x x + x − 2x a) Tìm giá trị x để biểu thức A có nghĩa SEE ON WWW.VIETMATHS.COM WWW.VIETMATHS.COM TOÁN BỒI DƯỠNG HS GIỎI THCS b) Rút gọn biểu thức A c) Tìm giá trị x để A < 68 Tìm 20 chữ số thập phân số : 0,9999 (20 chữ số 9) 69 Tìm giá trị nhỏ nhất, giá trị lớn : A = | x - | + | y | với | x | + |y|=5 70 Tìm giá trị nhỏ A = x4 + y4 + z4 biết xy + yz + zx = 71 Trong hai số : n + n + n+1 (n số nguyên dương), số lớn ? 72 Cho biểu thức A = + + − Tính giá trị A theo hai cách 73 Tính : ( + + 5)( + − 5)( − + 5)(− + + 5) 74 Chứng minh số sau số vô tỉ : + ; − ; 2 + 75 Hãy so sánh hai số : a = 3 − b=2 − ; 76 So sánh + +1 + − − − số 2+ 3+ 6+ 8+4 2+ 3+ 77 Rút gọn biểu thức : Q = 78 Cho P = 14 + 40 + 56 + 140 Hãy biểu diễn P dạng tổng thức bậc hai 79 Tính giá trị biểu thức x2 + y2 biết : x − y + y − x = 80 Tìm giá trị nhỏ lớn : A = − x + + x 81 Tìm giá trị lớn : M = ( a+ b ) với a, b > a + b 82 CMR số 2b + c − ad ; 2c + d − ab ; 2d + a − bc ; 2a + b − cd có hai số d- ương (a, b, c, d > 0) 83 Rút gọn biểu thức : N = + + + 18 84 Cho x + y + z = xy + yz + zx , x, y, z > Chứng minh x = y = z 85 Cho a1, a2, …, an > a1a2aan = Chứng minh: (1 + a1)(1 + a2)…(1 + an) 2n 86 Chứng minh : ( a+ b ) ≥ 2(a + b) ab (a, b 0) 87 Chứng minh đoạn thẳng có độ dài a, b, c lập thành tam giác đoạn thẳng có độ dài a , b , c lập thành tam giác (x + 2) − 8x b) B = x− x a +2 ≥ Khi có 89 Chứng minh với số thực a, ta có : a2 +1 ab − b a 88 Rút gọn : a) A = − b b đẳng thức ? SEE ON WWW.VIETMATHS.COM WWW.VIETMATHS.COM TOÁN BỒI DƯỠNG HS GIỎI THCS 90 Tính : A = + + − hai cách +5 6,9 b) 2+ 2− + 92 Tính : P = + 2+ − 2− 91 So sánh : a) 13 − 12 7− 93 Giải phương trình : x + + 2x − + x − − 2x − = 2 1.3.5 (2n − 1) ; ∀n ∈ Z+ 94 Chứng minh ta ln có : Pn = < 2.4.6 2n 2n + 95 Chứng minh a, b > 96 Rút gọn biểu thức : A= a2 b2 + b a a+ b≤ x − 4(x − 1) + x + 4(x − 1) 1 − x −1 x − 4(x − 1) a b+b a : =a−b ab a− b 97 Chứng minh đẳng thức sau : a) (a, b > ; a b) 14 − 15 − b) + = −2 : 1− − 1− a + a a − a c) 1 + 1 − = 1− a a + a −1 (a > 0) 98 Tính : a) ; b) + − 13 + 48 − − 29 − 20 c) + 48 − 99 So sánh : a) + 15 c) 28 − 16 + 48 b) + 15 12 + 16 d) 25 18 + 19 100 Cho đẳng thức : a + a2 − b a − a2 − b a± b = ± (a, b > a2 b > 0) 2 Áp dụng kết để rút gọn : a) c) 2+ + 2+ + 2− − 2− 3−2 ; b) 17 − 12 − 3+ 2 17 + 12 2 10 + 30 − 2 − : 10 − 2 −1 101 Xác định giá trị biểu thức sau : a) A = xy − x − y − xy + x − y − 1 1 1 1 với x = a + , y = b + a b SEE ON WWW.VIETMATHS.COM (a > ; b > 1) WWW.VIETMATHS.COM TOÁN BỒI DƯỠNG HS GIỎI THCS b) B = a + bx + a − bx a + bx − a − bx 2am , m < b (1 + m ) với x = 102 Cho biểu thức P(x) = 2x − x − 3x − 4x + a) Tìm tất giá trị x để P(x) xác định Rút gọn P(x) b) Chứng minh x > P(x).P(- x) < 103 Cho biểu thức A = x+2−4 x−2 + x+2+4 x−2 4 − +1 x2 x a) Rút gọn biểu thức A b) Tìm số nguyên x để biểu thức A số nguyên 104 Tìm giá trị lớn (nếu có) giá trị nhỏ (nếu có) biểu thức sau: a) − x b) x − x (x > 0) c) + − x g) 2x − 2x + e) − − 3x d) x − − h) − − x + 2x + i) 2x − x + 105 Rút gọn biểu thức : A = x + 2x − − x − 2x − , ba cách ? 106 Rút gọn biểu thức sau : a) b) + 48 − 10 + 4 + 10 + + − 10 + c) 107 Chứng minh đẳng thức với b ; a a) ( a + b ± a − b = a ± a2 − b a± b = ) 94 − 42 − 94 + 42 b b) a + a2 − b a − a2 − b ± 2 108 Rút gọn biểu thức : A = x + 2x − + x − 2x − 109 Tìm x y cho : x + y − = x + y − 2 (a + c) + ( b + d ) 110 Chứng minh bất đẳng thức : a + b + c2 + d ≥ 111 Cho a, b, c > Chứng minh : a2 b2 c2 a+b+c + + ≥ b+c c+a a+b 112 Cho a, b, c > ; a + b + c = Chứng minh : a) a + + b + + c + < 3,5 113 CM : (a + c )( b + c ) + b) (a a+b + b+c + c+a ≤ + d )( b + d ) ≥ (a + b)(c + d) với a, b, c, d > 114 Tìm giá trị nhỏ : A = x + x 115 Tìm giá trị nhỏ : A = (x + a)(x + b) x 116 Tìm giá trị nhỏ nhất, giá trị lớn A = 2x + 3y biết 2x2 + 3y2 = SEE ON WWW.VIETMATHS.COM WWW.VIETMATHS.COM TOÁN BỒI DƯỠNG HS GIỎI THCS 117 Tìm giá trị lớn A = x + − x 118 Giải phương trình : x − − 5x − = 3x − 119 Giải phương trình : x + x −1 + x − x −1 = 120 Giải phương trình : 3x + 21x + 18 + x + 7x + = 121 Giải phương trình : 3x + 6x + + 5x + 10x + 14 = − 2x − x 122 Chứng minh số sau số vô tỉ : − ; 2+ 123 Chứng minh x − + − x ≤ 124 Chứng minh bất đẳng thức sau phương pháp hình học : a + b b + c ≥ b(a + c) với a, b, c > 125 Chứng minh (a + b)(c + d) ≥ ac + bd với a, b, c, d > 126 Chứng minh đoạn thẳng có độ dài a, b, c lập đợc thành tam giác đoạn thẳng có độ dài a , b , c lập đợc thành tam giác (a + b) a + b + ≥ a b + b a với a, b a b c 128 Chứng minh + + > với a, b, c > b+c a+c a+b 127 Chứng minh 129 Cho x − y2 + y − x = Chứng minh x2 + y2 = 130 Tìm giá trị nhỏ A = x − x − + x + x − 131 Tìm GTNN, GTLN A = − x + + x 132 Tìm giá trị nhỏ A = x + + x − 2x + 133 Tìm giá trị nhỏ A = − x + 4x + 12 − − x + 2x + 134 Tìm GTNN, GTLN : ( a) A = 2x + − x b) A = x 99 + 101 − x ) 135 Tìm GTNN A = x + y biết x, y > thỏa mãn a b + =1 x y (a b số dương) 136 Tìm GTNN A = (x + y)(x + z) với x, y, z > , xyz(x + y + z) = xy yz zx + + với x, y, z > , x + y + z = z x y x2 y2 z2 138 Tìm GTNN A = biết x, y, z > , + + x+y y+z z+x 137 Tìm GTNN A = xy + yz + zx = 139 Tìm giá trị lớn : a) A = ( a+ b ) với a, b > , a + b b) B= ( a+ b ) +( a+ c ) +( a+ d ) +( b+ c ) +( b+ d ) +( c+ d ) với a, b, c, d > a + b + c + d = SEE ON WWW.VIETMATHS.COM WWW.VIETMATHS.COM TỐN BỒI DƯỠNG HS GIỎI THCS 140 Tìm giá trị nhỏ A = 3x + 3y với x + y = 141 Tìm GTNN A = b c + c+d a+b với b + c a + d ; b, c > ; a, d 142 Giải phương trình sau : a) x − 5x − 3x + 12 = d) x − − x + = b) x − 4x = x − e) x − x − − x − = g) x + 2x − + x − 2x − = h) x + − x − + x + − x − = i) x + x + − x = k) − x − x = x − l) 2x + 8x + + x − = 2x + m) x + = x − x − o) x −1 + x + + c) 4x + − 3x + = n) x + + x + 10 = x + + x + ( x − 1) ( x − 3x + ) = − 2x p) 2x + + x + + 2x + − x + = + x + q) 2x − 9x + + 2x − = 2x + 21x − 11 ( 143 Rút gọn biểu thức : A = 2 − + )( ) 18 − 20 + 2 144 Chứng minh rằng, ∀n ∈ Z+ , ta ln có : 1 + + + >2 n 1+ ( ) n +1 −1 145 Trục thức mẫu : a) 1+ + b) x + x +1 146 Tính : a) − − 29 − 20 b) + − 13 + 48 ( 147 Cho a = − + 148 Cho b = 3−2 17 − 12 − )( c) − − 29 − 12 ) 10 − Chứng minh a số tự nhiên 3+ 2 17 + 12 b có phải số tự nhiên khơng ? 149 Giải phương trình sau : a) c) ( ) −1 x − x + − = (5 − x ) − x + ( x − 3) x − 5− x + x −3 b) =2 ( ) −1 x = ( ) +1 x − 3 d) x + x − = 150 Tính giá trị biểu thức : M = 12 − 29 + 25 + 21 − 12 + 29 − 25 − 21 1 1 + + + + 1+ 2+ 3+ n −1 + n 1 1 152 Cho biểu thức : P = − + − + 2− 3− 4− 2n − 2n + 151 Rút gọn : A = a) Rút gọn P SEE ON WWW.VIETMATHS.COM b) P có phải số hữu tỉ khơng ? WWW.VIETMATHS.COM TỐN BỒI DƯỠNG HS GIỎI THCS 1 1 153 Tính : A = + + + + +1 + + 100 99 + 99 100 1 154 Chứng minh : + + + + > n n 155 Cho a = 17 − Hãy tính giá trị biểu thức: A = (a5 + 2a4 17a3 a2 + 18a 17)2000 156 Chứng minh : a − a − < a − − a − (a 3) 157 Chứng minh : x − x + > (x 0) 158 Tìm giá trị lớn S = x − + y − , biết x + y = + 2a − 2a : A= + + + 2a − − 2a 159 Tính giá trị biểu thức sau với a = 160 Chứng minh đẳng thức sau : ( )( 10 − ) − 15 = ( + )( 10 − ) = d) a) + 15 c) − b) + = + 48 = 161 Chứng minh bất đẳng thức sau : 2 ( ( ) +1 ) + e) 17 − + = − 5+ 5− + − 10 < 5− 5+ +1 − c) + + 0, − 1,01 > − + + + − + −1 2− 3 3 d) + + + 3− > − 2+ 6 2− 2+ a) 27 + > 48 e) h) 2+2 ( 3+ b) −1 + 5+ −2 ) − ( − > 1,9 ) g) 3+ 5+ − + + 2− < 0,8 < n − n − Từ suy ra: n 1 + + + < 2005 1006009 2+ 3+ 163 Trục thức mẫu : a) 2+ 3+ 6+ 8+4 3+ 3− y= 164 Cho x = 3− 3+ 2004 < + b) 2+ + Tính A = 5x2 + 6xy + 5y2 165 Chứng minh bất đẳng thức sau : SEE ON WWW.VIETMATHS.COM 10 2002 2003 + > 2002 + 2003 2003 2002