1. Trang chủ
  2. » Tất cả

Giáo án Hình học lớp 12 bài 2 Phương trình mặt phẳng

29 12 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 29
Dung lượng 483,66 KB

Nội dung

Microsoft Word BÃ�I 2 PHƯÆ�NG TRÃ�NH MẶT PHẲNG doc TOANMATH com Trang 1 BÀI 2 PHƯƠNG TRÌNH MẶT PHẲNG Mục tiêu  Kiến thức + Nắm được cách xác định mặt phẳng, vectơ pháp tuyến của mặt phẳng + Nắm[.]

BÀI PHƯƠNG TRÌNH MẶT PHẲNG Mục tiêu  Kiến thức + Nắm cách xác định mặt phẳng, vectơ pháp tuyến mặt phẳng + Nắm công thức tính khoảng cách từ điểm đến mặt phẳng, góc hai mặt phẳng + Nhận biết vị trí tương đối đường thẳng với mặt phẳng, mặt phẳng với mặt cầu  Kĩ + Viết phương trình tổng quát mặt phẳng + Xác định vectơ pháp tuyến trường hợp + Tính khoảng cách góc + Xác định vị trí tương đối vận dụng vào giải tập I LÍ THUYẾT TRỌNG TÂM Phương trình mặt phẳng Vectơ pháp tuyến    Vectơ n  vectơ pháp tuyến    giá n vng góc với    Cặp vectơ phương mặt phẳng   Hai vectơ a, b không phương cặp vectơ phương    giá chúng song song nằm    Chú ý:    Nếu n vectơ pháp tuyến    k n  k   vectơ pháp tuyến          Nếu a, b cặp vectơ phương    n   a, b  vectơ pháp tuyến    Phương trình tổng quát mặt phẳng  Ax  By  Cz  D  với A2  B  C   Nếu ( ) có phương trình Ax  By  Cz  D  n  ( A; B; C ) vectơ pháp tuyến ( )   Phương trình mặt phẳng qua M  x0 ; y0 ; z0  có vectơ pháp tuyến n  ( A; B; C ) là: A  x  x0   B  y  y0   C  z  z0   Các trường hợp đặc biệt Các hệ số Phương trình mặt phẳng    D  Ax  By  Cz     qua gốc tọa độ O A0 By  Cz  D     / / Ox TOANMATH.com Tính chất mặt phẳng        Ox Trang B0 Ax  Cz  D     / /Oy     Oy C 0 Ax  By  D     / /Oz     Oz A B0 Cz  D     / /  Oxy       Oxy  AC 0    / /  Oxz  By  D       Oxz  BC 0    / /  Oyz  Ax  D       Oyz  Nếu ( ) cắt trục toạ độ điểm (a;0;0), (0; b;0), (0;0; c) với abc  ta có phương trình mặt phẳng theo đoạn chắn ( ) : x y z    a b c Chú ý: Nếu phương trình ( ) khơng chứa ẩn ( ) song song chứa trục tương ứng Khoảng cách từ điểm tới mặt phẳng Trong không gian Oxyz, cho điểm A  x A ; y A ; z A  mặt phẳng ( ) : Ax  By  Cz  D  Khi khoảng cách từ điểm A đến mặt phẳng ( ) tính theo cơng thức: d( A, ( ))  Ax A  By A  Cz A  D A2  B  C Vị trí tương đối Vị trí tương đối hai mặt phẳng Trong không gian Oxyz, cho hai mặt phẳng ( ) : A1 x  B1 y  C1 z  D1  0; (  ) : A2 x  B2 y  C2 z  D2  +) ( )  (  )  A1 B1 C1 D1    A2 B2 C2 D2 +) ( ) / /(  )  A1 B1 C1 D1    A2 B2 C2 D2 +) ( )  (  )  A1 B1 B C   A2 B2 B2 C2 +) ( )  (  )  A1 A2  B1 B2  C1C2  Vị trí tương đối mặt phẳng mặt cầu Trong không gian Oxyz, cho mặt phẳng mặt cầu TOANMATH.com Trang ( ) : Ax  By  Cz  D  ; ( S ) : ( x  a )  ( y  b)  ( z  c )  R Để xét vị trí ( ) ( S ) ta làm sau: +) Nếu d  I ,     R ( ) khơng cắt ( S ) +) Nếu d  I ,      R    tiếp xúc  S  H Khi H gọi tiếp điểm đồng thời H hình chiếu vng góc I lên       gọi tiếp diện +) Nếu d  I ,      R    cắt  S  ( x  a )  ( y  b)  z  c (C ) :   Ax  By  Cz  D   theo đường tròn có phương trình  R2 Bán kính  C  r  R  d [ I , ( )] Tâm J (C) hình chiếu vng góc I    Góc hai mặt phẳng Trong khơng gian Oxyz, cho hai mặt phẳng ( ) : A1 x  B1 y  C1 z  D1  (  ) : A2 x  B2 y  C2 z  D2    Góc ( ) (  ) bù với góc hai vectơ pháp tuyến n , n Tức     n n cos    ,      cos n , n      n  n A1 A2  B1 B2  C1C2 A12  B12  C12  A22  B22  C22 Chùm mặt phẳng  Tập hợp tất mặt phẳng qua giao tuyến hai mặt phẳng ( ) (  ) gọi chùm mặt phẳng  Gọi  d  giao tuyến hai mặt phẳng ( ) : A1 x  B1 y  C1 z  D1  (  ) : A2 x  B2 y  C2 z  D2  Khi  P  mặt phẳng chứa  d  mặt phẳng  P  có dạng m   A1 x  B1 y  C1 z  D1   n   A2 x  B2 y  C2 z  D2   với m  n  SƠ ĐỒ HỆ THỐNG HÓA TOANMATH.com Trang II CÁC DẠNG BÀI TẬP Dạng 1: Xác định vectơ pháp tuyến viết phương trình mặt phẳng Bài tốn Viết phương trình mặt phẳng biết điểm thuộc mặt phẳng tìm vectơ pháp tuyến Phương pháp giải  Mặt phẳng    qua điểm M  x0 ; y0 ; z0  có vectơ pháp tuyến n   A; B; C  A  x  x0   B  y  y0   C  z  z0    Ví dụ: Phương trình mặt phẳng qua điểm A 1; 2;3 có vectơ pháp tuyến v  1; 2;1 là: 1 x  1   y    1 z  3   x  y  z   Ví dụ mẫu x y z    2 1   C n   3; 6; 2  D n   2; 1;3 Ví dụ 1: Trong khơng gian Oxyz, vectơ pháp tuyến mặt phẳng  A n   3; 6; 2   B n   2; 1;3 Hướng dẫn giải Ta có phương trình x y z 1   1 x  y  z    3x  y  z   2 1 3  Một vectơ pháp tuyến mặt phẳng n   3;6; 2  Chọn A TOANMATH.com Trang Ví dụ 2: Cho ba điểm A  2;1; 1 , B  1;0;  , C  0; 2; 1 Phương trình mặt phẳng qua A vng góc với BC A x  y  z   B x  y  z   C x  y   D x  y  z   Hướng dẫn giải  Mặt phẳng  P  qua A  2;1; 1 vng góc với BC nên nhận BC  1; 2; 5  làm vectơ pháp tuyến Vì ta viết phương trình mặt phẳng  P  là: x    y  1   z  1   x  y  z   Chọn A Chú ý: Mặt phẳng    qua điểm M , vng góc với đường thẳng  d  , vectơ phương  u đường thẳng  d  vectơ pháp tuyến    Ví dụ 3: Trong khơng gian với hệ toạ độ Oxyz , cho hai điểm A 1; 3;  , B  3;5; 2  Phương trình mặt phẳng trung trực đoạn thẳng AB có dạng x  ay  bz  c  Khi a  b  c A 2 B 4 C 3 D Hướng dẫn giải   Gọi M trung điểm đoạn thẳng AB, ta có M (2;1; 0) AB  (2;8; 4)  2(1; 4; 2)  2n  Mặt phẳng trung trực đoạn thẳng AB qua M có vectơ pháp tuyến n nên có phương trình: x  y  z   Suy a  4, b  2, c  6 Vậy a  b  c  4 Chọn B Ví dụ 4: Trong không gian Oxyz, mặt phẳng song song với mặt phẳng  Oxy  qua điểm A(1;1;1) có phương trình A y   B x  y  z   C x   D z   Hướng dẫn giải  Mặt phẳng song song với mặt phẳng (Oxy ) qua A(1;1;1) nhận k  (0;0;1) làm vectơ pháp tuyến nên có phương trình z   Chọn D Ví dụ 5: Cho mặt phẳng  Q  : x  y  z   Viết phương trình mặt phẳng ( P ) song song với mặt phẳng  Q  , đồng thời cắt trục Ox, Oy điểm M , N cho MN  2 A ( P) : x  y  z   B ( P) : x  y  z  C ( P ) : x  y  z   D ( P ) : x  y  z   Hướng dẫn giải TOANMATH.com Trang ( P ) / /(Q) nên phương trình mặt phẳng ( P ) có dạng x  y  z  D  ( D  2) Khi mặt phẳng ( P) cắt trục Ox, Oy điểm M ( D; 0;0) , N (0; D; 0) Từ giả thiết: MN  2  D  2  D  (do D  2) Vậy phương trình mặt phẳng ( P ) : x  y  z   Chọn A Chú ý: Mặt phẳng    qua điểm M  x0 ; y0 ; z0  song song với mặt phẳng (  ) : Ax  By  Cz  D     có phương trình A  x  x0   B  y  y0   C  z  z0   Ví dụ 6: Cho điểm M (1; 2;5) Mặt phẳng ( P ) qua điểm M cắt trục tọa độ Ox, Oy, Oz A, B, C cho M trực tâm tam giác ABC Phương trình mặt phẳng ( P ) B x  y  z  30  A x  y  z   C x y z    D x y z   1 Hướng dẫn giải Ta có OA  (OBC )  OA  BC    BC  (OAM )  BC  OM (1) AM  BC  Tương tự AB  OM (2) Từ (1) (2) suy OM  ( ABC ) hay OM  ( P )  Suy OM  (1; 2;5) vectơ pháp tuyến ( P) Vậy phương trình mặt phẳng  P  x    y     z     x  y  z  30  Chọn B Ví dụ 7: Cho tứ diện ABCD có đỉnh A(8; 14; 10); AD, AB, AC song song với Ox, Oy, Oz Phương trình mặt phẳng  BCD  qua H (7; 16; 15) trực tâm BCD có phương trình A x  y  z  100  C x y z    16 15 B x  y  z  100  D x y z    16 15 Hướng dẫn giải  Theo đề ra, ta có ( BCD ) qua H (7; 16; 15), nhận HA  (1; 2;5) vectơ pháp tuyến Phương trình mặt phẳng  BCD  ( x  7)  2( y  16)  5( z  15)   x  y  z  100  Vậy ( BCD ) : x  y  z  100  Chọn B TOANMATH.com Trang Bài tốn Viết phương trình mặt phẳng biết điểm thuộc mặt phẳng tìm cặp vectơ phương Phương pháp giải   Mặt phẳng ( ) qua điểm M  x0 ; y0 ; z0  có cặp vectơ phương a , b Khi vectơ pháp tuyến    ( ) n  [a , b ]   Ví dụ: Mặt phẳng ( P) qua điểm M (0; 2; 2) nhận vectơ a (2, 0,1), b (1,1, 0) hai vectơ phương Suy  P  có vectơ pháp tuyến là:    n  [a , b ]  (1;1; 2) Từ ta có ( P ) : x  y  z   Ví dụ mẫu Ví dụ 1: Cho hai điểm A(1; 1;5), B(0;0;1) Mặt phẳng ( P) chứa A, B song song với trục Oy có phương trình A x  z   B x  y  z   C x  z   D x  z   Hướng dẫn giải Do mặt phẳng ( P ) chứa A, B song song với trục Oy nên vectơ pháp tuyến ( P)    n  [ AB; j ]  (4;0; 1) Phương trình mặt phẳng ( P) là: 4( x  0)  0( y  0)  1( z  1)   x  z   Chọn A Ví dụ 2: Trong không gian với hệ tọa độ Oxyz , cho hai điểm A 1; 2; 1 ; B  2;1;0  mặt phẳng ( P) : x  y  z   Gọi (Q) mặt phẳng chứa A; B vuông góc với ( P) Phương trình mặt phẳng (Q) A x  y  z   B x  y  3z   C x  y  z   D x  y  z   Hướng dẫn giải Phương trình mặt phẳng  Q  chứa AB vng góc với mặt phẳng ( P ) nên có cặp vectơ phương   AB  (1; 1;1) nP  (2;1; 3)    Suy nQ  [ AB; nP ]  (2;5;3) Mặt phẳng (Q) qua A(1; 2; 1) nên 2( x  1)  5( y  2)  3( z  1)   x  y  3z   Chọn A Chú ý: Mặt phẳng ( ) chứa đường thẳng  d  vng góc với mặt phẳng    :   +) Xác định vectơ phương u ( d ) vectơ pháp tuyến n    TOANMATH.com Trang    Một vectơ pháp tuyến ( ) là: n  u , n  +) Lấy điểm M thuộc d M  ( ) Ví dụ 3: Mặt phẳng ( ) qua gốc tọa độ O vng góc với hai mặt phẳng ( P ) : x  y  z   0, (Q) : x  y  12 z   có phương trình A x  y  z  B 10 x  15 y  z   C 10 x  15 y  z   D x  y  z  Hướng dẫn giải  Ta có ( P) : x  y  z   có vectơ pháp tuyến n1  (1; 1;1)  (Q) : x  y  12 z   có vectơ pháp tuyến n2  (3; 2; 12) Do ( )  ( P) ( )  (Q ) nên ( ) có vectơ pháp tuyến    n  [n1 ; n2 ]  (10;15;5) Vậy ( ) có phương trình 10 x  15 y  z   x  y  z  Chọn D Chú ý: Mặt phẳng    qua điểm M vng góc với hai mặt phẳng cắt    ,    : Chọn vectơ pháp tuyến    là:    n   n , n  Ví dụ 4: Trong không gian với hệ tọa độ Oxyz , cho ba điểm A(0;1; 2), B (2; 2;1) , C (2;1; 0) Khi đó, phương trình mặt phẳng ( ABC ) ax  y  z  d  Hãy xác định a d A a  1, d  B a  6, d  6 C a  1, d  6 D a  6, d  Hướng dẫn giải   Ta có: AB   2; 3; 1 ; AC   2; 0; 2     3 1 1 2 3   AB; AC    ; ;    6; 6; 6     2 2 2 2     Chọn n   AB; AC   1;1; 1 vectơ pháp tuyến mặt phẳng  ABC  Ta có phương trình mặt phẳng  ABC  là: x  y   z    x  y  z   Vậy a  1, d  Chọn A Chú ý: Mặt phẳng    qua ba điểm không thẳng hàng A, B, C Khi ta xác định vectơ pháp tuyến    là:    n   AB, AC  TOANMATH.com Trang Ví dụ 5: Trong khơng gian Oxyz , biết mặt phẳng ax  by  cz   qua hai điểm A(3;1; 1), B(2; 1; 4) vuông góc với ( P) : x  y  z   Giá trị a  b  c A B 12 C 10 D Hướng dẫn giải   Gọi ( ) : ax  by  cz   Ta có AB  (1; 2;5), nP  (2; 1;3)    Mặt phẳng ( ) nhận n  [ AB, nP ]  (1;13;5) làm vectơ pháp tuyến nên ( ) có dạng  x  13 y  z  D  Mặt phẳng ( ) qua A(3;1; 1) nên 3  13.1  5.( 1)  D   D  5  ( ) :  x  13 y  z   hay ( ) : x  13 y  z   Suy a  1; b  13; c  5 Vậy a  b  c  Chọn A Bài tốn Lập phương trình mặt phẳng liên quan đến khoảng cách Phương pháp giải Sử dụng công thức liên quan đến khoảng cách: Khoảng cách từ điểm M  x0 , y0 , z0  đến mặt phẳng ( ) : ax  by  cz  d  d( M , ( ))  ax0  by0  cz0  d a  b2  c2 Chú ý: Khoảng cách hai mặt phẳng song song: d [( ), (  )]  d[ M , (  )] điểm M  ( ) Ví dụ mẫu Ví dụ 1: Trong không gian với hệ tọa độ Oxyz , lập phương trình mặt phẳng song song với mặt phẳng (  ) : x  y  z   cách (  ) khoảng A x  y  z   0; x  y  z  B x  y  z   C x  y  z   0; x  y  z  D x  y  z   0; x  y  z  Hướng dẫn giải Gọi ( ) mặt phẳng cần tìm Ta có A(0; 0;3)  (  ) Do ( ) / /(  ) nên phương trình mặt phẳng ( ) có dạng: x  y  z  m  với m  Ta có d(( ), (  ))   d( A, ( ))   | m 3|  3 m  | m  |   (thỏa mãn) m  Vậy phương trình mặt phẳng cần tìm TOANMATH.com Trang x  y  z   x  y  z  Chọn A Ví dụ 2: Trong khơng gian Oxyz , cho hai mặt phẳng ( P ) : x  3z   0, (Q ) : x  z   Mặt phẳng song song cách ( P ) (Q) có phương trình là: A x  z   B x  z   C x  z   D x  z   Hướng dẫn giải Điểm M ( x; y; z ) cách ( P ) (Q)  d ( M ;( P ))  d ( M ; (Q ))   x  3z   x  3z  | x  3z  | | x  3z  |   1 1  x  3z    x  3z    4   x  z    x  3z   Vậy M thuộc ( ) : x  3z   Nhận thấy ( ) song song với ( P ) (Q) Chọn A Ví dụ 3: Trong khơng gian với hệ tọa độ Oxyz , cho hai điểm A 1; 2;1 , B  3; 4;  mặt phẳng ( P ) : ax  by  cz  46  Biết khoảng cách từ A, B đến mặt phẳng ( P ) Giá trị biểu thức T  a  b  c A 3 B 6 C D Hướng dẫn giải Gọi H , K hình chiếu A, B mặt phẳng ( P ) Theo giả thiết, ta có: AB  3, AH  6, BK  Do A, B phía với mặt phẳng ( P ) Lại có: AB  BK  AK  AH Mà AB  BK  AH nên H  K Suy A, B, H ba điểm thẳng hàng B trung điểm AH nên tọa độ H (5; 6; 1)  Vậy mặt phẳng ( P) qua H (5;6; 1) nhận AB  (2; 2; 1) vectơ pháp tuyến nên có phương trình 2( x  5)  2( y  6)  1( z  1)   x  y  z  23  Theo ra, ta có ( P ) : 4 x  y  z  46  nên a  4, b  4, c  Vậy T  a  b  c  6 Chọn B Bài tốn Viết phương trình mặt phẳng liên quan đến mặt cầu Phương pháp giải Viết phương trình mặt phẳng    tiếp xúc với mặt cầu (S) điểm H Giả sử mặt cầu  S  có tâm I bán kính R, ta viết phương trình mặt phẳng ( ) qua H   có vectơ pháp tuyến n  IH Ví dụ: Trong khơng gian với hệ trục Oxyz , cho mặt cầu ( S ) : ( x  1)  y  ( z  2)2  TOANMATH.com Trang 10 Chứng minh tương tự, ta có: BC  OH  2 Từ (1), (2) ta có OH  ( ABC ) Suy 1 1    2 OA OB OC OH 1 đạt giá trị nhỏ OH đạt giá trị lớn Mà OH  OM   2 OA OB OC nên OH đạt giá lớn OM hay H  M  Khi OM  ( ABC ) nên ( P ) có vectơ pháp tuyến OM  (1; 2;3) Vậy để biểu thức Phương trình mặt phẳng ( P ) 1( x  1)  2( y  2)  3( z  3)   x  y  z  14  Chọn B Ví dụ 5: Trong khơng gian Oxyz , có mặt phẳng qua điểm M  4; 4;1 chắn ba trục tọa độ Ox, Oy , Oz theo ba đoạn thẳng có độ dài theo thứ tự lập thành cấp số nhân có cơng bội A B C ? D Hướng dẫn giải Gọi A(a; 0;0), B (0; b; 0), C (0;0; c ) với abc  giao điểm mặt phẳng ( P ) trục toạ độ Khi ( P ) có phương trình x y z    a b c Theo giả thiết ta có:  4  a  8, b  4, c   M  ( P)  a  b  c      a  8, b  4, c  2  1 OC  OB  OA | c | | b | | a |  a  16, b  8, c    Vậy có ba mặt phẳng thỏa mãn Chọn C Ví dụ 6: Trong không gian với hệ toạ độ Oxyz , cho điểm A 1; 0;  , B  0;1;0  Mặt phẳng x  ay  bz  c  qua điểm A, B đồng thời cắt tia Oz C cho tứ diện OABC tích Giá trị a  3b  2c A 16 B C 10 D Hướng dẫn giải Mặt phẳng qua điểm A, B đồng thời cắt tia Oz C  0;0; t  với t  có phương trình x y z    1 t Mặt khác: VOABC  1  OA.OB.OC   t  6 Vậy phương trình mặt phẳng cần tìm có dạng TOANMATH.com x y z     x  y  z 1  1 Trang 15 Vậy a  b  1, c  1 Suy a  3b  2c   3.1   Chọn D Bài tập tự luyện dạng Câu 1: Trong không gian Oxyz , cho mặt phẳng  P  có phương trình x  y  z   Vectơ pháp tuyến mặt phẳng  P    B n  (1;1; 2) A n   1;1; 2   C n  (1; 2; 3)  D n  (1; 2; 3) Câu 2: Cho ba điểm A(2;1; 1), B(1; 0; 4), C (0; 2; 1) Phương trình mặt phẳng qua A vng góc với BC A x  y  z   B x  y  z   C x  y   D x  y  z   Câu 3: Trong không gian với hệ tọa độ Oxyz , cho điểm M  3; 2;1 Mặt phẳng  P  qua M cắt trục tọa độ Ox, Oy, Oz điểm A, B, C không trùng với gốc tọa độ cho M trực tâm tam giác ABC Trong mặt phẳng sau, mặt phẳng song song với mặt phẳng  P  A 3x  y  z  14  B x  y  z   C x  y  z  14  D x  y  z   Câu 4: Trong không gian với hệ trục tọa độ Oxyz , cho mặt phẳng ( P ) : x  y  z   hai điểm A(3;0;1), B(0; 1;3) Phương trình mặt phẳng (Q) qua A song song với mặt phẳng ( P ) A x  y  z   B x  y  z   C x  y  z   D x  y  z   Câu 5: Trong không gian Oxyz , cho A(0;1;1), B(1; 0; 0) mặt phẳng ( P ) : x  y  z   (Q ) mặt phẳng song song với ( P ) đồng thời đường thẳng AB cắt (Q) C cho CA  2CB Mặt phẳng  Q  có phương trình là: A x  y  z   x  y  z  B x  y  z  C x  y  z   D x  y  z   x  y  z  Câu 6: Trong khơng gian Oxyz , phương trình mặt phẳng P song song cách mặt phẳng (Q) : x  y  z   khoảng đồng thời ( P ) không qua O A x  y  z   B x  y  z  C x  y  z   D x  y  z   Câu 7: Trong không gian Oxyz , cho A(2; 0;0), B (0; 4; 0), C (0; 0; 6), D(2; 4; 6) Gọi ( P ) mặt phẳng song song với ( ABC ) , cách D mặt phẳng ( ABC ) Phương trình ( P ) A x  y  z  24  B x  y  z  12  C x  y  z  D x  y  z  36  TOANMATH.com Trang 16 Câu 8: Trong không gian Oxyz, cho ba điểm A  3; 2;3 , B  2;1;  , C  4;1;  Phương trình mặt phẳng ( ABC ) A x  y  z   B x  y  z   C x  y  z   D x  y  z   Câu 9: Trong không gian Oxyz , cho điểm M 1; 2;3 Viết phương trình mặt phẳng  P  qua M cắt trục Ox, Oy, Oz A, B, C cho M trọng tâm tam giác ABC A ( P ) : x  y  z  18  B ( P ) : x  y  z   C ( P ) : x  y  z  18  D ( P ) : x  y  z   Câu 10: Trong không gian Oxyz, cho điểm M 1; 3;  Hỏi có mặt phẳng qua M cắt trục toạ độ A, B, C mà OA  OB  OC  ? A B C D Câu 11: Trong không gian Oxyz , cho mặt cầu ( S ) : x  y  z  x  y  z   Viết phương trình mặt phẳng ( ) chứa Oy cắt mặt cầu ( S ) theo thiết diện đường trịn có chu vi 8 A ( ) : x  z  B ( ) : x  z  C ( ) : x  z  D ( ) : x  z   Bài tập nâng cao Câu 12: Cho điểm M   4; 7; 5  , N  3; 9; 10  đường thẳng d1 , d , d3 qua điểm N song song với Ox, Oy, Oz Mặt phẳng  P  qua M  cắt d1 , d , d3 A, B, C  cho M  trực tâm ABC  Phương trình mặt phẳng  P  A x  y  z  35  C x y z    7 5 B x  y  z  35  D x y z    7 5 Câu 13: Trong không gian với hệ tọa độ Oxyz , cho điểm A 1; 0;  , B  0; 2;0  , C  0; 0;1 Xét ba mặt cầu tiếp xúc đôi với tiếp xúc với mặt phẳng  ABC  A, B, C Tổng diện tích ba mặt cầu là: A 33 B 36 C 31 D 54 Câu 14: Trong không gian tọa độ Oxyz , cho mặt phẳng ( P ) : x  y  z   , điểm A(0;1;1), B(1; 0; 0) với A B nằm mặt phẳng ( P ) mặt cầu ( S ) : ( x  2)  ( y  1)2  ( z  2)  CD đường kính thay đổi ( S ) cho CD / /( P ) bốn điểm A, B, C , D tạo thành tứ diện Giá trị lớn thể tích tứ diện ABCD A 2 B C D Dạng Vị trí tương đối hai mặt phẳng, mặt cầu mặt phẳng Bài tốn Vị trí tương đối hai mặt phẳng Phương pháp giải Cho hai mặt phẳng: ( P ) : Ax  By  Cz  D  ; TOANMATH.com Trang 17  P  : Ax  By  C z  D  Khi đó:  ( P) cắt  P   A : B : C  A : B : C   ( P) / /  P   A B C D    A B C  D A B C D    A B C  D      ( P)   P   n( P )  n P  n( P ) n P   ( P )   P    AA  BB  CC   Chú ý:  Nếu A  tương ứng A   Nếu B  tương ứng B   Nếu C  tương ứng C   Ví dụ: Trong khơng gian với hệ trục toạ độ Oxyz , cho hai mặt phẳng ( ) : x  y  z   (  ) : x  y  mz   Tìm m để       song song với Hướng dẫn giải Ta có ( ) / /(  )  (vơ lý 1 1    m 2 2 )   1 Vậy không tồn m để hai mặt phẳng    ,    song song với Ví dụ mẫu Ví dụ 1: Trong khơng gian Oxyz, mặt phẳng ( P) : x  y  z   vng góc với mặt phẳng đây? A x  y  z   B x  y  z   C x  y  z   D x  y  z   Hướng dẫn giải  Mặt phẳng ( P ) có vectơ pháp tuyến nP  (2;1;1)  Mặt phẳng (Q) : x  y  z   có vectơ pháp tuyến nQ  (1; 1; 1)     Mà nP  nQ      nP  nQ  ( P )  (Q) Vậy mặt phẳng x  y  z   mặt phẳng cần tìm Chọn B Ví dụ 2: Trong khơng gian với hệ tọa độ Oxyz , cho mặt phẳng  P  có phương trình mx  ( m  1) y  z  10  mặt phẳng (Q) : x  y  z   Với giá trị m ( P ) (Q) vng góc với nhau? TOANMATH.com Trang 18 A m  2 B m  C m  D m  1 Hướng dẫn giải  ( P ) : mx  (m  1) y  z  10  có vectơ pháp tuyến n1  (m; m  1;1)  (Q) : x  y  z   có vectơ pháp tuyến n2  (2;1; 2)   ( P)  (Q )  n1  n2   2m  m     m  Chọn C Bài tốn Vị trí tương đối mặt cầu mặt phẳng Phương pháp giải Cho mặt phẳng ( ) : Ax  By  Cz  D  mặt cầu tâm I ; bán kính R  ( ) ( S ) khơng có điểm chung  d ( I , ( ))  R  ( ) tiếp xúc với ( S )  d ( I , ( ))  R Khi ( ) tiếp diện  ( ) ( S ) cắt  d ( I ; ( ))  R Khi  O  có tâm hình chiếu I    bán kính r  R  d ( I ; ( )) Ví dụ mẫu Ví dụ 1: Trong khơng gian Oxyz , cho mặt cầu ( S ) : x  y  z  x  y  12  Mặt phẳng cắt  S  theo đường trịn có bán kính r  3? A x  y  z  26  B x  y  z  12  C x  y  z  17  20  D x  y  z   Hướng dẫn giải Phương trình mặt cầu  S  x  y  z  x  y  12  Suy tâm I  3; 2;  bán kính R  Ta gọi khoảng cách từ tâm I mặt cầu tới mặt phẳng đáp án h, để mặt phẳng cắt mặt cầu  S  theo đường tròn có bán kính r  h  R  r  25   Đáp án A loại h  |18  26 |  26 Đáp án B loại h  14  Chọn đáp án C h  Đáp án D loại h  1  Chọn C Ví dụ 2: Trong khơng gian với hệ tọa độ Oxyz , cho điểm I 1; 2; 2  mặt phẳng TOANMATH.com Trang 19 ( P ) : x  y  z   Phương trình mặt cầu tâm I cắt mặt phẳng ( P ) theo giao tuyến đường trịn có diện tích 16 A ( x  2)2  ( y  2)  ( z  1)  36 B ( x  1)  ( y  2)  ( z  2)  C ( x  1)  ( y  2)  ( z  2)  25 D ( x  1)2  ( y  2)2  ( z  2)  16 Hướng dẫn giải Ta có a  d ( I ; ( P ))  | 2.1  2.2   | 22  22  12  Bán kính đường tròn giao tuyến là: r  S   16  Mặt cầu tâm I cắt mặt phẳng  P  theo giao tuyến đường trịn nên ta có R  a  r   16  25  R  Vậy phương trình mặt cầu tâm I , bán kính R  là: ( x  1)  ( y  2)  ( z  2)  25 Chọn C Ví dụ 3: Trong không gian Oxyz, cho mặt cầu  S  có phương trình x  y  z  x  y  z   mặt phẳng ( ) : x  y  12 z  10  Tìm phương trình mặt phẳng    thỏa mãn đồng thời điều kiện: tiếp xúc với  S  ; song song với ( ) cắt trục Oz điểm có cao độ dương A x  y  12 z  78  B x  y  12 z  26  C x  y  12 z  78  D x  y  12 z  26  Hướng dẫn giải Mặt cầu ( S ) có tâm I (1; 2;3), bán kính R  12  22  32   Vì ( ) / /(  ) nên phương trình ( ) có dạng: x  y  12 z  d  0, d  10 Vì (  ) tiếp xúc mặt cầu ( S ) nên d ( I ,(  ))  R  | 4.1  3.2  12.3  d | 42  32  ( 12)  d  26  | d  26 | 52    d  78 Do (  ) cắt trục Oz điểm có cao độ dương nên chọn d  78 Vậy phương trình mặt phẳng (  ) : x  y  12 z  78  Chọn C Bài tập tự luyện dạng Bài tập Câu 1: Trong không gian Oxyz , mặt phẳng song song với mặt phẳng  Oxz  ? A  P  : x   TOANMATH.com B (Q) : y   C ( R ) : z   D ( S ) : x  z   Trang 20 ... C x  y  12 z  78  D x  y  12 z  26  Hướng dẫn giải Mặt cầu ( S ) có tâm I (1; 2; 3), bán kính R  12  22  32   Vì ( ) / /(  ) nên phương trình ( ) có dạng: x  y  12 z  d ... C2 z  D2    Góc ( ) (  ) bù với góc hai vectơ pháp tuyến n , n Tức     n n cos    ,      cos n , n      n  n A1 A2  B1 B2  C1C2 A 12  B 12  C 12  A 22  B 22. .. | 2. 1  2. 2   | 22  22  12  Bán kính đường trịn giao tuyến là: r  S   16  Mặt cầu tâm I cắt mặt phẳng  P  theo giao tuyến đường trịn nên ta có R  a  r   16  25  R  Vậy phương

Ngày đăng: 05/02/2023, 12:38

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN