1. Trang chủ
  2. » Tất cả

5 ĐỀ TUYỂN SINH LỚP 10:

23 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 874,5 KB

Nội dung

5 ĐỀ TUYỂN SINH LỚP 10 5 ĐỀ TUYỂN SINH LỚP 10 NINH BÌNH, ĐÀ NẴNG, QUẢNG NAM , QUẢNG TRỊ, NGHỆ AN TUYỂN SINH VÀO 10 THPT TỈNH NINH BÌNH Năm học 2009 2010 Câu 1 (2,5 điểm) 1 Giải phương trình 4x = 3x +[.]

5 ĐỀ TUYỂN SINH LỚP 10: NINH BÌNH, ĐÀ NẴNG, QUẢNG NAM , QUẢNG TRỊ, NGHỆ AN TUYỂN SINH VÀO 10 THPT TỈNH NINH BÌNH Năm học 2009- 2010 Câu (2,5 điểm): Giải phương trình: 4x = 3x + Thực phép tính: A = 12 − + 48 Giải hệ phương trình sau: 1 x − y =1   3 + =  x y Câu (2,0 điểm): Cho phương trình: 2x2 + (2m – 1)x + m – = (1), m tham số Giải phương trình (1) m = 2 Tìm m để phương trình (1) có hai nghiệm x1, x2 thoả mãn: x12 + x 22 + 2x1x2 = Câu (1,5 điểm): Một người xe đạp từ A đến B cách 36 km Khi từ B trở A, người tăng vận tốc thêm km/h, thời gian thời gian 36 phút Tính vận tốc người xe đạp từ A đến B Câu (2,5 điểm): Cho đường trịn tâm O, bán kính R Đường thẳng d tiếp xúc với đường tròn (O;R) A Trên đường thẳng d lấy điểm H cho AH < R Qua H kẻ đường thẳng vng góc với đường thẳng d, cắt (O;R) hai điểm E B (E nằm H B) Chứng minh góc ABE góc EAH Trên dường thẳng d lấy điểm C cho H trung điểm đoạn AC Đường thẳng CE cắt AB K Chứng minh tứ giác AHEK nội tiếp đường tròn Xác định vị trí điểm H đường thẳng d cho AB = R Câu (1,5 điểm): Cho ba số a,b,c > Chứng minh rằng: 1 1 + 3 + 3 ≤ a + b + abc b + c + abc c + a + abc abc Tìm x, y nguyên thoả mãn: x + y + xy + = x2 + y2 GỢI Ý ĐỀ THI TUYỂN SINH VÀO 10 THPT TỈNH NINH BÌNH NĂM HỌC 2009 - 2010 Câu 1: 1 4x = 3x + x = A = 12 - + 48 = 10 đk : x ≠ 0; y ≠ -4 +4 = 10 1 4 7  − =  − = = y=  x y x y x   ⇔  ⇔ 1 ⇔  3 3   + = + = = − x= x y x y  y  ( Thoả mãn điều kiện x ≠ 0; y ≠ Kl: … Câu 2: Phương trình: 2x2 + (2m-1)x + m - 1= (1) Thay m = vào phương trình (1) ta có 2x2 + 3x + = Có ( a - b + c = - + = 0) => Phương trình (1) có nghiệm x1 = -1 ; x2 = - 1/2 Phương trình (1) có ∆ = (2m -1)2 - 8(m -1) = 4m2 - 12m + = (2m - 3)2 ≥ với m => Phương trình (1) ln có hai nghiệm x1; x2 với giá trị m − 2m  x + x =  2 + Theo hệ thức Vi ét ta có:  x x = m−  2 + Theo điều kiện đề bài: 4x12 + 4x22 + x1 x2 = 4(x1 + x2)2 - x1 x2 = ( - 2m)2 - 3m + = 4m2 - 7m + = + Có a + b + c = => m1 = 1; m2 = 3/4 Vậy với m = m = 3/4 phương trình (1) có hai nghiệm x1; x2 thoả mãn: 4x12 + 4x22 + x1 x2 = Câu 3: Gọi vận tốc người xe đạp từ A đến B x (km/h; x > 0) Thì vận tốc người từ B A : x + (km/h) Thời gian người từ A đến B là: Thời gian người từ B A là: 36 (h) x 36 (h) x +3 Vì thời gian thời gian nên ta có phương trình : 36 x - 36 x +3 = x2 + 3x - 180 = Có ∆ = 729 > Giải được: x1 = 12 (thoả mãn điều kiện ẩn) x2 = -15 (không thoả mãn điều kiện ẩn) Vậy vận tốc người từ A đến B 12 km/h Câu 4: Chứng minh: ∠ABE = ∠EAH ∠ABE góc nội tiếp chắn cung AE ∠ EAH góc tạo tia tiếp tuyến AH dây cung AE => ∠ABE = ∠EAH ( Hệ góc tạo tia tiếp tuyến dây cung) Chứng minh tứ giác AHEK nội tiếp + BH vng góc với AC H => ∠ BHC = 900 + H trung điểm AC (gt) O + EH ⊥ AC H (BH ⊥ AC H; E ∈ BH) => ∆AEC cân E => ∠ EAH = ∠ ECH( t/c tam giác cân) + ∠ABE = ∠ EAH ( cm câu a) => ∠ABE = ∠ ECH ( = ∠ EAH) A => ∠KBE = ∠ KCH => Tứ giác KBCH nội tiếp => ∠BKC = ∠ BHC = 900 => ∠AKE = 900 (1)( Kề bù với ∠BKC = 900) Mà ∠EHA = 900 (2) ( EH ⊥ AC H) Từ (1) (2) => ∠AKE + ∠EHA = 1800 => Tứ giác AHEK nội tiếp Xác định vị trí điểm H đường thẳng (d) cho AB = R B K N E H C + Kẻ ON vng góc với AB N => N trung điểm AB( Quan hệ vng góc đường kính dây cung) => AN = R Ta có tam giác ONA vuông N theo cách dựng điểm N => tag ∠NOA = AN : AO = => ∠NOA = 600 => ∠OAN = ∠ONA - ∠NOA = 300 + ∠OAH = 900 ( AH tiếp tuyến (O) tiếp điểm A) => ∠BAH = 600 + chứng minh : ∆BAC cân B có ∠BAH = 600 => tam giác ABC R R (A; => AH = AC/2 = AC/2 = => H giao điểm ) đường thẳng (d) Chú ý : Bài tốn có hai nghiệm hình: Câu 5: Với a > 0; b > 0; c > Chứng minh rằng: 1 1 + 3 + ≤ 3 a + b + abc b + c + abc c + a + abc abc HD: ta có a3 + b3 + abc = (a+b)(a2 + b2 - ab) + abc ≥ (a+b)(2ab - ab)+ abc ( (a-b)2 ≥ với a, b => a2 + b2 ≥ 2ab) => a3 + b3 + abc ≥ ab(a+b) + abc = ab( a+b+c) Vì a, b, c > => Tương tự ta có: 1 ≤ a + b + abc ( a + b + c )ab 1 ≤ 3 b + c + abc (a + b + c)bc 1 ≤ c + a + abc (a + b + c )ca (1) (2) (3) Từ (1) ; (2); (3) => 1 a+b+c + + ≤ = 3 a + b + abc b + c + abc c + a + abc abc(a + b + c ) abc Dấu "=" xảy a = b = c Vậy bất đẳng thức chứng minh Tìm x, y nguyên thoả mãn: x + y + xy + = x2 + y2 (*) x2 - x(y + 1) + y2 - y - = (**) Vì x, y nghiệm phương trình (*) => Phương trình (**) ln có nghiệm theo x => ∆ = (y+1)2 - (y2 - y - 2) ≥ => -3y2 + 6y + ≥ - y2 + 2y + ≥ (- y2 - y) + 3(y + 1) ≥ (y + 1)(3 - y) ≥ Giải -1 ≤ y ≤ y nguyên => y ∈ {-1; 0; 1; 2; 3} + Với y = -1 => (*) x2 = => x = + với y = => (*) x2 - x - = có nghiệm x1 = -1; x2 = thoả mãn x ∈ Z + với y = => (*) x2 - 2x - = có ∆' = khơng phương +với y = => x2 - 3x = => x = x = thoả mãn x ∈ Z + với y = => (x-2)2 = => x = thoả mãn x ∈ Z Vậy nghiệm nguyên phương trình là: (x,y) ∈ {(−1;0); (0;−1); (2;0); (0;2); (3;2); (2;3)} SỞ GIÁO DỤC & ĐÀO TẠO TP ĐÀ NẲNG KỲ THI TUYỂN SINH VÀO LỚP 10 Khóa ngày 23 tháng 06 năm 2009 MƠN: TỐN ( Thời gian 120 phút, khơng kể thời gian giao đề ) Bài ( điểm )  a    K = − + Cho biểu thức  ÷:  ÷  a −1 a − a   a +1 a −1 a) Rút gọn biểu thức K b) Tính giá trị K a = + 2 c) Tìm giá trị a cho K < mx − y =  Bài ( điểm ) Cho hệ phương trình:  x y  − = 334 a) Giải hệ phương trình cho m = b) Tìm giá trị m để phương trình vơ nghiệm Bài ( 3,5 điểm ) AO Kẻ dây MN vng góc với AB I Gọi C điểm tùy ý thuộc cung lớn MN cho C không trùng với M, N B Nối AC cắt MN E a) Chứng minh tứ giác IECB nội tiếp đường tròn b) Chứng minh ∆AME ∆ACM đồng dạng AM2 = AE.AC c) Chứng minh AE.AC - AI.IB = AI2 Cho đường tròn (O), đường kính AB cố định, điểm I nằm A O cho AI = d) Hãy xác định vị trí điểm C cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME nhỏ Bài ( 1,5 điểm ) Người ta rót đầy nước vào ly hình nón cm Sau người ta rót nước từ ly để chiều cao mực nước cịn lại nửa Hãy tính thể tích lượng nước lại ly HẾT BÀI GIẢI Bài a) Rút gọn biểu thức K: Điều kiện a > a ≠  a    K = − + ÷:  ÷ a − a ( a − 1) a + ( a + 1)( a − 1)     a −1 a +1 : a ( a − 1) ( a + 1)( a − 1) a −1 a −1 = ( a − 1) = a ( a − 1) a b) Tính giá trị K a = + 2 Ta có: a = + 2 = (1 + )2 ⇒ a = + + 2 − 2(1 + 2) = =2 Do đó: K = 1+ 1+ c) Tìm giá trị a cho K < a − < a < a −1 K b’ = - m ; c = m2 - m + ) Δ’ = = m2 - ( m2 - m + ) = m2 - m2 + m - = m – ,do pt có hai nghiệm x1 ; x (với m tham số ) Δ’ ≥ ⇒ m ≥ theo viét ta có: x1 + x2 = = 2m x1 x2 = = m2 - m + x12 + x22 = ( x1 + x2) – 2x1x2 = (2m)2 - 2(m2 - m + )=2(m2 + m - ) =2(m2 + 2m 1 12 13 13 + - ) =2[(m + )2 - ]=2(m + )2 4 4 2 Do điều kiện m ≥ ⇒ m + (m + )2 ≥ 1 ≥ 3+ = 2 49 49 13 49 13 ⇒ 2(m + )2 ≥ ⇒ 2(m + )2 ≥ - = 18 2 2 2 Vậy GTNN x12 + x22 18 m = Bài (4.0 điểm ) a) Chứng minh tam giác CBD cân tứ giác CEHK nội tiếp * Tam giác CBD cân AC ⊥ BD K ⇒ BK=KD=BD:2(đường kính vng góc dây cung) ,ΔCBD có đường cao CK vừa đường trung tuyến nên ΔCBD cân * Tứ giác CEHK nội tiếp · · · AEC = HEC = 1800 ( góc nội tiếp chắn nửa đường trịn) ; KHC = 1800 (gt) · · HEC + HKC = 900 + 900 = 1800 (tổng hai góc đối) ⇒ tứ giác CEHK nội tiếp b) Chứng minh AD2 = AH AE Xét ΔADH ΔAED có : ¶A chung ; AC ⊥ BD K ,AC cắt cung BD A suy A điểm cung · · BAD , hay cung AB cung AD ⇒ ADB (chắn hai cung nhau) Vậy = AED ΔADH = ΔAED (g-g) ⇒ AD AE = ⇒ AD = AH AE AH AD B” M c) Cho BD = 24 cm , BC =20cm Tính chu vi hình B trịn (O) BK=KD=BD:2 = 24:2 = 12 (cm) ( cm câu a ) ; BC =20cm * ΔBKC vng A có : KC = BC − BK = 202 − 122 = 400 − 144 = 256 =16 · * ABC = 900 ( góc nội tiếp chắn nửa đường tròn) A K ⇒ AC =O25 ⇒ R= 12,5cm ΔABC vng K có : BC2 =KC.AC ⇔ 400 =16.AC C C = 2пR = 2п.12,5 = 25п (=25.3,14 = 78.5) (cm) H E D M’ D” 11 d)Tính góc MBC theo α để M thuộc đường tròn (O) ΔMBC cân M có MB = MC suy M cách hai đầu đoạn thẳng BC ⇒ M ∈ d đường trung trực BC ,(OB=OC nên O ∈ d ),vì M∈ (O) nên giả sử d cắt (O) M (M thuộc cung nhỏ BC )và M’(thuộc cung lớn BC ) * Trong trường hợp M thuộc cung nhỏ BC ; M D nằm khác phía BC hay AC α ΔBCD cân C nên ·BDC = ·DBC = (1800 − ·DCB) : = 900 − Tứ giác MBDC nội tiếp ·BDC + ·BMC = 1800 ⇒ ·BMC = 1800 − ·BDC = 1800 − (900 − α ) = 1800 − 900 + α = 900 + α 2 * Trong trường hợp M’ thuộc cung lớn BC ΔMBC cân M có MM’ đường trung trực nên MM’ phân giác góc BMC α α ¼ ' = (900 + α ) (góc nội tiếp cung bị ⇒ ·BMM ' = ·BMC = (900 + ) : = 450 + ⇒ sđ BM chắn) » = 2BCD · sđ BD = 2α (góc nội tiếp cung bị chắn) α α » < BM ¼ ' ⇒ 2α < 900 + ⇔ 2α − < 900 ⇔ 3α < 1800 ⇔ 00 < α < 600 suy tồn + Xét BD 2 hai điểm M thuộc cung nhỏ BC (đã tính )và M’ thuộc cung lớn BC α Tứ giác BDM’C nội tiếp ·BDC = ·BM 'C = 900 − (cùng chắn cung BC nhỏ) α α » = BM ¼ ' ⇒ 2α = 900 + ⇔ 2α − = 900 ⇔ 3α = 1800 ⇔ α = 600 M’≡ D khơng + Xét BD 2 thỏa mãn điều kiện đề nên khơng có M’ ( có điểm M tmđk đề bài) α α » > BM ¼ ' ⇒ 2α > 900 + ⇔ 2α − > 900 ⇔ 3α > 1800 ⇔ 600 < α ≤ 900 (khi BD qua + Xét BD 2 · » không thỏa mãn điều kiện đề ⇒ ⇒ tâm O BD ⊥ AC BCD = α = 90 ) M’ thuộc cung BD nên khơng có M’ (chỉ có điểm M thỏa mãn đk đề) SỞ GIÁO DỤC & ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 12 NGHỆ AN Khóa ngày 25 tháng 06 năm 2009 MƠN: TỐN ( Thời gian 120 phút, khơng kể thời gian giao đề ) Bài ( điểm ) Cho hàm số: y = f (x) = − x + x + a) Tìm tập xác định hàm số b) Chứng minh f(a) = f(- a) với −2 ≤ a ≤ 2 c) Chứng minh y ≥ Bài ( 1,5 điểm) Giải tốn cách lập phương trình: Theo kế hoạch hai tổ sản xuất 600 sản phẩm thời gian định Do áp dụng kĩ thuật nên tổ I vượt mức 18% tổ II vượt mức 21% Vì thời gian quy định họ hoàn thành vượt mức 120 sản phẩm Hỏi số sản phẩm giao tổ theo kế hoạch ? Bài ( điểm ) Cho phương trình: x2 - 2mx + (m - 1)3 = với x ẩn số, m tham số (1) a) Giải phương trình (1) m = - b) Xác định m để phương trình (1) có hai nghiệm phân biệt, nghiệm bình phương nghiệm lại Bài ( 3,5 điểm) · Cho tam giác ABC có góc nhọn, BAC = 450 Vẽ đường cao BD CE tam giác ABC Gọi H giao điểm BD CE a) Chứng minh tứ giác ADHE nội tiếp đường tròn b) Chứng minh: HD = DC DE c) Tính tỉ số: BC d) Gọi O tâm đường tròn ngoại tiếp tam giác ABC Chứng minh OA ⊥ DE - HẾT BÀI GIẢI Bài a) Điều kiện để biểu thức có nghĩa là: 2 − x ≥ x ≤ ⇔ ⇔ −2 ≤ x ≤  x + ≥ x ≥ −   Vậy tập xác định hàm số là: x ∈ [-2; 2] b) Chứng minh f(a) = f(- a) với −2 ≤ a ≤ f (a) = − a + a + ; f ( −a) = − ( −a) + −a + = − a + a + Từ suy f(a) = f(- a) c) Chứng minh y ≥ 13 y = ( − x ) + 2 − x + x + ( + x ) = − x + − x2 + + x = + − x ≥ (vì − x ≥ 0) Đẳng thức xảy ⇔ x = ±2 Bài Gọi x,y số sản phẩm tổ I, II theo kế hoạch ĐK: x, y nguyên dương x < 600; y < 600 Theo kế hoạch hai tổ sản xuất 600 sản phẩm nên ta có phương trình: x + y = 600 (1) 18 21 x (sp), Số sản phẩm tăng tổ II là: y (sp) Số sản phẩm tăng tổ I là: 100 100 Do số sản phẩm hai tổ vượt mức 120(sp) nên ta có phương trình: 18 21 x+ y = 120 (2) 100 100 Từ (1) (2) ta có hệ phương trình:  x + y = 600   18 21 100 x + 100 y = 120 Giải hệ ta x = 200 , y = 400 (thỏa mãn điều kiện) Vậy số sản phẩm đựoc giao theo kế hoạch tổ I 200, tổ II 400 Bài a)Giảiphương trình (1) m = -1: Thay m = −1 vào phương trình (1) ta phương trình: x2 + x − = ⇔ ( x + x + 1) − = ⇔ ( x + 1) − 32 = ⇔ ( x + + 3) ( x + − 3) = x + =  x = −4 ⇔ ( x + 4) ( x − 2) = ⇔  ⇔ x − =  x=2 b) Xác định m để phương trình (1) có hai nghiệm phân biệt, nghiệm bình phương nghiệm cịn lại Phương trình (1) có hai nghiệm phân biệt ⇔ ∆’ = m2 - (m - 1)3 > (*) Giả sử phương trình có hai nghiệm u; u theo định lí Vi-ét ta có: u + u = 2m (**)  u.u = (m − 1)  u + u = 2m m − + ( m − 1) = 2m u + u = 2m m − 3m = ** ⇔ ⇔ ⇔ ⇔ ( )     u = m −1   u = m −1  u = m −1 u = ( m − 1) 14 PT m − 3m = ⇔ m ( m − 3) = ⇔ m1 = 0; m2 = (thỏa mãn đk (*) ) Vậy m = m = hai giá trị cần tìm Lưu ý: Có thể giả sử phương trình có hai nghiệm, tìm m vào PT(1) tìm hai nghiệm phương trình , hai nghiệm thỏa mãn yêu cầu trả lời Ở trường hợp m = PT (1) có hai nghiệm x1 = −1; x2 = thỏa mãn x2 = x12 , m = PT (1) có hai nghiệm x1 = 2; x2 = thỏa mãn x2 = x12 Bài A a) Chứng minh tứ giác ADHE nội tiếp đường trịn Vì BD, CE đường cao tam giác ABC nên: 45° · · · · BDA = CEA = 900 hay HDA = HEA = 900 · · Tứ giác ADHE có HDA + HEA = 1800 nên nội tiếp đường tròn O M b) Chứng minh: HD = DC E · · · Do tứ giác ADHE nội tiếp nên EAD (cùng bù DHE ) = DHC H · · Mà EAD = 450 (gt) nên DHC = 450 B · Tam giác HDC vuông D, DHC = 450 nên vuông cân K Vậy DH = DC DE c) Tính tỉ số : BC · · Tứ giác BEDC có BEC = BDC = 900 nên nội tiếp đường tròn · Suy ra: ·ADE = ·ABC (cùng bù EDC ) · chung nên ∆ADE ∆ABC (g-g) ∆ADE ∆ABC có ·ADE = ·ABC , BAC Do đó: D C DE AE = BC AC AE · = cosA=cos450 = (do tam giác AEC vuông E EAC = 450 ) AC DE = Vậy: BC d) Gọi O tâm đường tròn ngoại tiếp tam giác ABC Chứng minh OA ⊥ DE Mà Cách 1: Kẻ đường kính AK đường trịn (O) cắt DE M Ta có: ·ADE = ·AKC (cùng ·ABC ) Do tứ giác CDMK nội tiếp · Suy ra: ·ACK + DMK = 1800 Mà ·ACK = 900 (góc nội tiếp chắn nửa đường tròn) · Nên DMK = 900 Vậy AK ⊥ DE hay OA ⊥ DE (đpcm) Cách 2: Kẻ tiếp tuyến xAy đường tròn (O) A · Ta có: xAC = ·ABC (cùng sđ »AC ) x y 45° ·ABC = ·ADE · Do đó: xAC = ·ADE Suy xy // DE Mà xy ⊥ OA nên DE ⊥ OA (đpcm) O D E 15 H B C ĐỀ THI TUYỂN SINH LỚP 10 THPT TỈNH QUẢNG TRỊ MƠN: TỐN Ngày thi: 07/07/2009 Câu (2,0 điểm) Rút gọn biểu thức sau: a) 12 − 27 + b) − + ( 2− 5) = 1− + − Giải phương trình: x2-5x+4=0 Câu (1,5 điểm) Trong mặt phẳng toạ độ Oxy cho hàm số y=-2x+4 có đồ thị đường thẳng (d) a/Tìm toạ độ giao điểm đường thẳng (d) với hai trục toạ b/Tìm (d) điểm có hồnh độ tung độ Câu (1,5 điểm) Cho phương trình bậc hai: x2-2(m-1)x+2m-3=0 (1) a/Chứng minh phương trình (1) có nghiệm với giá trị m b/ Tìm giá trị m để phương trình (1) có hai nghiệm trái dấu Câu (1,5 điểm) Một mảnh vườn hình chử nhật có diện tích 720m2, tăng chiều dài thêm 6m giảm chiều rộng 4m diện tích mảnh vườn khơng đổi Tính kích thước mảnh vườn ? Câu (3,5 điểm) Cho điểm A nằm ngồi đường trịn tâm O bán kính R Từ A kẻ đường thẳng (d) không qua tâm O, cắt (O) B C ( B nằm A C) Các tiếp tuyến với đường tròn (O) 16 B C cắt D Từ D kẻ DH vng góc với AO (H nằm AO), DH cắt cung nhỏ BC M Gọi I giao điểm DO BC Chứng minh OHDC tứ giác nội tiếp Chứng minh OH.OA = OI.OD Chứng minh AM tiếp tuyến đường tròn (O) Cho OA = 2R Tính theo R diện tích phần tam giác OAM nằm ngồi đường trịn (O) HƯỚNG DẨN GIẢI ĐỀ THI TUYỂN SINH LỚP 10 THPT TỈNH QUẢNG TRỊ MƠN: TỐN Ngày thi: 07/07/2009 Câu (2,0 điểm) 1.Rút gọn biểu thức sau: a) 12 − 27 + = − 3 + = 3 b) − + (2 − ) =1 − + − =1 − + −2 = −1 Giải phương trình: x2-5x+4=0 Ta có : a=1 ; b=-5 ; c=4 ; a+b+c= 1+(-5)+4=0 Nên phương trình có nghiệm : x=1 x=4 Hay : S= {1;4} Câu (1,5 điểm) Trong mặt phẳng toạ độ Oxy cho hàm số y=-2x+4 có đồ thị đường thẳng (d) a/Tìm toạ độ giao điểm đường thẳng (d) với hai trục toạ đô - Toạ độ giao điểm đường thẳng (d) với trục Oy nghiệm hệ : toạ độ giao điểm đường thẳng (d) với trục Oy A(0 ; 4) - Toạ độ giao điểm đường thẳng (d) với trục Ox nghiệm hệ : toạ độ giao điểm đường thẳng (d) với trục Ox B(2 ; 0) b/Tìm (d) điểm có hồnh độ tung độ  x=  x=  ⇔  y −= 2x +  y = Vậy  y=  y=  ⇔  y −= 2x +  x = Vậy 17 Gọi điểm M(x0 ; y0) điểm thuộc (d) x0 = y0 x0=-2x0+4  x0=4/3 => y0=4/3  Vậy: M(4/3;4/3) Câu (1,5 điểm) Cho phương trình bậc hai: x2-2(m-1)x+2m-3=0 (1) a) Chứng minh phương trình (1) có nghiệm với giá trị m x2 - 2(m-1)x + 2m - 3=0 Có: ∆’ = [ − ( m − 1) ] − (2m − 3) = m2-2m+1-2m+3 = m2-4m+4 = (m-2)2 ≥ với m Phương trình (1) ln ln có nghiệm với giá trị m  b) Phương trình (1) có hai nghiệm trái dấu a.c < 2m-3 < m< Vậy : với m < phương trình (1) có hai nghiệm trái dấu Câu (1,5 điểm) Gọi chiều rộng mảnh vườn a (m) ; a > Chiều dài mảnh vườn 720 a (m) Vì tăng chiều rộng thêm 6m giảm chiều dài 4m diện tích khơng đổi nên ta có phương trình : (a-4) ( 720 a +6) = 720 ⇔ a2 -4a-480 = a = 24 ⇔ a = −20(< 0)loai Vậy chiều rộng mảnh vườn 24m chiều dài mảnh vườn 30m Câu (3,5 điểm) Cho điểm A nằm đường trịn tâm O bán kính R Từ A kẻ đường thẳng (d) không qua tâm O, cắt (O) B C ( B nằm A C) Các tiếp tuyến với đường tròn (O) B C cắt D Từ D kẻ DH vuông góc với AO (H nằm AO), DH cắt cung nhỏ BC M Gọi I giao điểm DO BC Chứng minh OHDC tứ giác nội tiếp Chứng minh OH.OA = OI.OD Chứng minh AM tiếp tuyến đường tròn (O) Cho OA = 2R Tính theo R diện tích phần tam giác OAM nằm ngồi đường trịn (O) 18 H K O A B I M C D a) C/m: OHDC nội tiếp Ta có: DH vng goc với AO (gt) => ∠OHD = 900 CD vng góc với OC (gt) => ∠OCD = 900 Xét Tứ giác OHDC có ∠OHD + ∠OCD = 1800 Suy : OHDC nội tiếp đường tròn b) C/m: OH.OA = OI.OD Ta có: OB = OC (=R); DB = DC ( T/c hai tiếp tuyến cắt nhau) Suy OD đường trung trực BC => OD vuông góc với BC Xét hai tam giác vng ∆OHD ∆OIA có ∠AOD chung ∆OHD đồng dạng với ∆OIA (g-g)   OH OD = = >OH OA = OI OD (1) OI OA (đpcm) c) Xét ∆OCD vuông C có CI đường cao áp dụng hệ thức lượng tam giác vng, ta có: OC2 = OI.OD mà OC = OM (=R) (2) Từ (1) (2) : OM2 = OH.OA ⇒ OM OA = OH OM Xét tam giác : ∆OHM ∆OMA có : ∠AOM chung OM OA = OH OM Do : ∆OHM đồng dạng ∆OMA (c-g-c) ∠OMA = ∠OHM = 900  AM vng góc với OM M  19 AM tiếp tuyến (O) d)Gọi K giao điểm OA với (O); Gọi diện tích cần tìm S S = S ∆AOM - SqOKM  Xét ∆OAM vng M có OM = R ; OA = 2.OK = 2R => ∆OMK tam giác  ∠AOM = 600 1 3 = R2 (đvdt) => S ∆AOM = OA.MH = R.R 2 2 Π.R 60 Π.R = SqOKM = (đvdt) 360 S = S ∆AOM - SqOKM = R − Π.R = R 3 − Π  6 => MH = R SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA Đề thức (đvdt) KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2009-2010 Mơn thi : Tốn Ngày thi: 30 tháng năm 2009 Thời gian làm bài: 120 phút Bài (1,5 điểm) Cho phương trình: x2 – 4x + n = (1) với n tham số 1.Giải phương trình (1) n = Tìm n để phương trình (1) có nghiệm Bài (1,5 điểm) x + y = 2 x + y = Giải hệ phương trình:  Bài (2,5 điểm) Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x2 điểm B(0;1) Viết phương trình đường thẳng (d) qua điểm B(0;1) có hệ số k Chứng minh đường thẳng (d) cắt Parabol (P) hai điểm phân biệt E F với k 20 ... 400 − 144 = 256 =16 · * ABC = 900 ( góc nội tiếp chắn nửa đường tròn) A K ⇒ AC =O 25 ⇒ R= 12,5cm ΔABC vng K có : BC2 =KC.AC ⇔ 400 =16.AC C C = 2пR = 2п.12 ,5 = 25? ? (= 25. 3,14 = 78 .5) (cm) H E D... DỤC VÀ ĐÀO TẠO QUẢNG NAM ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2009-2010 Mơn thi TỐN ( chung cho tất thí sinh) Thời gian 120 phút (khơng kể thời gian giao đề) Bài (2.0 điểm ) Tìm... điểm M thỏa mãn đk đề) SỞ GIÁO DỤC & ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 12 NGHỆ AN Khóa ngày 25 tháng 06 năm 2009 MƠN: TỐN ( Thời gian 120 phút, khơng kể thời gian giao đề ) Bài ( điểm ) Cho

Ngày đăng: 01/01/2023, 08:10

w