1. Trang chủ
  2. » Giáo Dục - Đào Tạo

LUẬN văn THẠC sĩ HAY vấn đề duy nhất của hàm phân hình khi đạo hàm của đa thức chung nhau một hàm nhỏ

56 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 56
Dung lượng 1,45 MB

Nội dung

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM NGUYỄN QUỐC CƯỜNG VẤN ĐỀ DUY NHẤT CỦA HÀM PHÂN HÌNH KHI ĐẠO HÀM CỦA ĐA THỨC CHUNG NHAU MỘT HÀM NHỎ LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN - 2018 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM NGUYỄN QUỐC CƯỜNG VẤN ĐỀ DUY NHẤT CỦA HÀM PHÂN HÌNH KHI ĐẠO HÀM CỦA ĐA THỨC CHUNG NHAU MỘT HÀM NHỎ Chun ngành: Tốn Giải tích Mã số: 46 01 02 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học: PGS.TS HÀ TRẦN PHƯƠNG THÁI NGUYÊN - 2018 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com LỜI CAM ĐOAN Tơi xin cam đoan cơng trình nghiên cứu riêng tôi, kết nghiên cứu trình bày luận văn trung thực, khách quan không trùng lặp với đề tài khác công bố Việt Nam Tôi xin cam đoan thơng tin trích dẫn luận văn ghi rõ nguồn gốc Thái Nguyên, tháng năm 2018 Tác giả luận văn Nguyễn Quốc Cường i LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com LỜI CẢM ƠN Với tình cảm chân thành lịng biết ơn sâu sắc, tơi xin gửi lời cảm ơn đến PGS.TS Hà Trần Phương trực tiếp hướng dẫn khoa học tận tình giúp đỡ tơi hồn thành luận văn Tơi xin chân thành cảm Lãnh đạo phòng đào tạo, đặc biệt thầy cô trực tiếp quản lý đào tạo sau đại học, quý thầy cô giảng dạy lớp Cao học K24 (20162018) Trường Đại học Sư Phạm - Đại học Thái Nguyên tận tình truyền đạt kiến thức quý báu tạo điều kiện cho hồn thành khố học Tơi xin gửi lời cảm ơn chân thành đến đồng nghiệp, bạn bè toàn thể gia đình, người thân động viên tơi thời gian nghiên cứu đề tài Thái Nguyên, tháng năm 2018 Tác giả luận văn Nguyễn Quốc Cường ii LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ▼ö❝ ❧ö❝ tự ỡ s tr ỵ t❤✉②➳t ♣❤➙♥ ❜è ❣✐→ trà ✶ ✸ ✶✳✶✳ ❈→❝ ❤➔♠ ◆❡✈❛♥❧✐♥♥❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ỵ ỡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✷ ❱➜♥ ✤➲ ❞✉② ♥❤➜t ❝❤♦ ❤➔♠ ♣❤➙♥ ❤➻♥❤ ✶✷ ❑➌❚ ▲❯❾◆ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✹✾ ✺✵ ✷✳✶✳ ▼ët sè ❦✐➳♥ t❤ù❝ ❜ê s✉♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷ ✷✳✷✳ ❱➜♥ ✤➲ ❞✉② ♥❤➜t ❝❤♦ ❤➔♠ ♣❤➙♥ ❤➻♥❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✸ ✷✳✸✳ ❈❤ù♥❣ ỵ tứ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✸ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ▼ð ✤➛✉ ❱➜♥ ✤➲ ♥❣❤✐➯♥ ❝ù✉ sü ①→❝ ✤à♥❤ ❞✉② ♥❤➜t ❝õ❛ ❝→❝ ❤➔♠ →♥❤ ①↕ ♣❤➙♥ ❤➻♥❤ t❤ỉ♥❣ q✉❛ ↔♥❤ ♥❣÷đ❝ ❝õ❛ ♠ët t➟♣ ❤ú✉ ❤↕♥ t❤✉ ❤ót ✤÷đ❝ sü q✉❛♥ t➙♠ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ❝→❝ ♥❤➔ t♦→♥ ❤å❝ tr♦♥❣ ✈➔ ♥❣♦➔✐ ữợ P rss t ữủ ♥❤✐➲✉ ❦➳t q✉↔ q✉❛♥ trå♥❣✳ ◆➠♠ ✶✾✷✻✱ ❘✳ ◆❡✈❛♥❧✐♥♥❛ ✤➣ ❝❤ù♥❣ ♠✐♥❤ ♥➳✉ ❤❛✐ ❤➔♠ ♣❤➙♥ ❤➻♥❤ f, g ❝❤✉♥❣ ♥❤❛✉ ♥➠♠ ❣✐→ trà ♣❤➙♥ ❜✐➺t t❤➻ trò♥❣ ♥❤❛✉✳ ❑➳t q✉↔ ♥➔② ❝õ❛ ◆❡✈❛♥❧✐♥♥❛ ❝❤♦ t❤➜② ♠ët ❤➔♠ ♣❤➙♥ ❤➻♥❤ ♣❤ù❝ ✤÷đ❝ ①→❝ ✤à♥❤ ♠ët ❝→❝❤ ❞✉② ♥❤➜t →♥❤ ①↕ ♥❣÷đ❝✱ ❦❤ỉ♥❣ ❦➸ ❜ë✐✱ ❝õ❛ ♥➠♠ ❣✐→ trà ♣❤➙♥ ❜✐➺t✳ ổ tr ổ ữủ ỗ ❝❤♦ ❝→❝ ♥❣❤✐➯♥ ❝ù✉ sü ①→❝ ✤à♥❤ ❞✉② ♥❤➜t ❝õ❛ ❤❛✐ ❤➔♠ →♥❤ ①↕ ♣❤➙♥ ❤➻♥❤✳ ❱➲ s❛✉✱ ✈➜♥ ✤➲ ♥❣❤✐➯♥ ❝ù✉ sü ①→❝ ✤à♥❤ ❞✉② ♥❤➜t ❝õ❛ ❤❛✐ →♥❤ ①↕ ♣❤➙♥ ❤➻♥❤ t❤ỉ♥❣ q✉❛ ↔♥❤ ♥❣÷đ❝ ❝õ❛ ♠ët t➟♣ ❤ú✉ ❤↕♥ t❤✉ ❤ót ✤÷đ❝ sü q✉❛♥ t➙♠ ❝õ❛ ♥❤✐➲✉ t tr ữợ ởt ữủ ữ r rss õ ỗ t↕✐ ❤❛② ❦❤æ♥❣ ♠ët t➟♣ ❤ú✉ ❤↕♥ S ✱ ✤✐➲✉ ❦✐➺♥ E (S, f ) = E (S, g) ❦➨♦ t❤❡♦ f = g❄✳ ❚r♦♥❣ t❤ü❝ t➳ ❝➙✉ ❤ä✐ ❝õ❛ rss õ t ữủ t ữ s ỗ t↕✐ ❤❛② ❦❤ỉ♥❣ ✤❛ t❤ù❝ P s❛♦ ❝❤♦ ✈ỵ✐ ❜➜t ❦➻ ❝➠♣ ♣❤➙♥ ❤➻♥❤ ❦❤→❝ ❤➡♥❣ f ✈➔ g t❛ ❝â f = g ♥➳✉ P (f ) ✈➔ P (g) ❝❤✉♥❣ ♥❤❛✉ ❣✐→ trà ❦➸ ❝↔ ❜ë✐❄✳ ❱➜♥ ✤➲ ♥➔② ✤➣ ✤÷đ❝ ♥❣❤✐➯♥ ❝ù✉ ♠ët ❝→❝❤ ❧✐➯♥ tư❝ ♠↕♥❤ ♠➩ ✈ỵ✐ ♥❤ú♥❣ ❦➳t q✉↔ ❝õ❛ ▼✳ ▲✳ ❋❛♥❣ ✈➔ ❲✳ ▲✳ ❍♦♥❣✱ ❲✳ ❈✳ ▲✐♥ ✈➔ ❍✳ ❳✳ ❨✐✳✳✳ t❤í✐ ❣✐❛♥ ❣➛♥ ✤➙② ❝â ♠ët sè t→❝ ❣✐↔ ♥❣❤✐➯♥ ❝ù✉ ✈➜♥ ✤➲ ❞✉② ♥❤➜t ❝❤♦ ❝→❝ ❤➔♠ ♣❤➙♥ ❤➻♥❤ tr♦♥❣ ❤❛✐ tr÷í♥❣ ❤đ♣ ♣❤ù❝ ✈➔ p−❛❞✐❝ ❦❤✐ ✤↕♦ ❤➔♠ ❝õ❛ ❤❛✐ ✤❛ t❤ù❝ ❝õ❛ ❝→❝ ❤➔♠ ♣❤➙♥ ❤➻♥❤ ❝❤✉♥❣ ♥❤❛✉ ♠ët ❤➔♠ ♥❤ä ✭①❡♠ ❬✷❪✱❬✸❪✱❬✶✶❪✮✳ ▼ö❝ ✤➼❝❤ ❝õ❛ ✤➲ t➔✐ ❧✉➟♥ ✈➠♥ ❧➔ tr➻♥❤ ❜➔② ♠ët sè ❦➳t q✉↔ ♠ỵ✐ ❝õ❛ ❝→❝ t→❝ ❣✐↔ ✤➣ ❝ỉ♥❣ ❜è tr♦♥❣ t❤í✐ ❣✐❛♥ ❣➛♥ ✤➙② ✈➲ ❝→❝ ❤➔♠ ♣❤➙♥ ❤➻♥❤ tr➯♥ tr÷í♥❣ sè ♣❤ù❝ ✈➔ p−❛❞✐❝✱ ❦❤✐ ❤❛✐ ✤❛ t❤ù❝ f P (f ) ✈➔ g P (g) ❝❤✉♥❣ ♥❤❛✉ ♠ët ❤➔♠ ♥❤ä ✤÷đ❝ ❝ỉ♥❣ ❜è ❜ð✐ ❜❛ t→❝ ❣✐↔ ❆✳ ❊s❝❛ss✉t✱ ❑✳❇♦✉ss❛❢✱ ❏✳ ❖❥❡❞❛✳ ✶ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ▲✉➟♥ ✈➠♥ ❝❤✐❛ t❤➔♥❤ ❤❛✐ ❝❤÷ì♥❣✱ ❈❤÷ì♥❣ ✶ ❣✐ỵ✐ t❤✐➺✉ ✈➲ ♠ët sè ✈➜♥ ✤➲ ❝ì ❜↔♥ tr♦♥❣ ỵ tt ố tr ỗ ỵ ỡ tr ỵ tt tr trữớ ủ ♣❤ù❝ ✈➔ tr÷í♥❣ ❤đ♣ p−❛❞✐❝ ❝ị♥❣ ♠ët sè ❦➳t q✉↔ ❝❤✉➞♥ ❜à✳ ❚r♦♥❣ ❈❤÷ì♥❣ ✷✱ tr➻♥❤ ❜➔② ✈➜♥ ✤➲ ❞✉② ♥❤➜t ❦❤✐ f P (f ) ✈➔ g P (g) ởt ọ rữợ tr ♥ë✐ ❞✉♥❣ ❝❤➼♥❤ ❝õ❛ ❧✉➟♥ ✈➠♥✱ ❚æ✐ ①✐♥ ❜➔② tä ỏ t ỡ s s tợ P r Pữỡ ữớ t t ữợ tổ õ t ❤♦➔♥ t❤➔♥❤ ❦❤â❛ ❧✉➟♥ ♥➔②✳ ❚ỉ✐ ❝ơ♥❣ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ ❝❤➙♥ t❤➔♥❤ tỵ✐ t♦➔♥ t❤➸ ❝→❝ t❤➛② ❝ỉ ❣✐→♦ tr♦♥❣ ❦❤♦❛ ❚♦→♥✱ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠ ❚❤→✐ ◆❣✉②➯♥✱ ✣↕✐ ❤å❝ ❚❤→✐ ◆❣✉②➯♥ ✤➣ ❞↕② ❜↔♦ tæ✐ t➟♥ t➻♥❤ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ t↕✐ ❦❤♦❛✳ ◆❤➙♥ ❞à♣ ♥➔② ❚ỉ✐ ❝ơ♥❣ ①✐♥ ✤÷đ❝ ❣û✐ ❧í✐ ❝↔♠ ì♥ ❝❤➙♥ t❤➔♥❤ tỵ✐ ❣✐❛ ✤➻♥❤✱ ❜↕♥ ❜➧✱ ✤➣ ❧✉ỉ♥ ❜➯♥ tỉ✐✱ ❝ê ✈ơ✱ ✤ë♥❣ ✈✐➯♥✱ ❣✐ó♣ ✤ï tỉ✐ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ t❤ü❝ ❤✐➺♥ ❧✉➟♥ ✈➠♥ tèt ♥❣❤✐➺♣✳ ❚❤→✐ ◆❣✉②➯♥✱ ♥❣➔② ✶✾ t❤→♥❣ ✵✽ ♥➠♠ ✷✵✶✼ ❚→❝ ●✐↔ ◆❣✉②➵♥ ◗✉è❝ ❈÷í♥❣ ✷ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ ✶ ❈→❝ ❦✐➳♥ t❤ù❝ ❝ì sð tr ỵ tt ố tr rữớ ủ ự ợ ộ số tỹ x > 0✱ ❦➼ ❤✐➺✉✿ log+ x = max{log x, 0} ❑❤✐ ✤â log x = log+ x − log+ (1/x) ❇➙② ❣✐í t❛ ✤à♥❤ ♥❣❤➽❛ ❤➔♠ ✤➳♠✱ ❤➔♠ ①➜♣ ①➾✱ ❤➔♠ ✤➦❝ tr÷♥❣ ❝õ❛ ♠ët ❤➔♠ ♣❤➙♥ ❤➻♥❤✳ ❈❤♦ f ❧➔ ♠ët ❤➔♠ ♣❤➙♥ ❤➻♥❤ tr➯♥ DR ✈➔ ♠ët sè t❤ü❝ r > 0✱ tr♦♥❣ ✤â < R ≤ ∞, r < R✳ ❉➵ t❤➜② 2π 2π 2π log f (reiϕ ) dϕ = 2π ✣à♥❤ ♥❣❤➽❛ ✶✳✶✳ ❍➔♠ 2π f (reiϕ ) dϕ − 2π log+ log+ dϕ f (reiϕ ) 2π m(r, f ) = 2π log+ f (reiϕ ) dϕ ✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ ①➜♣ ①➾ ❝õ❛ ❤➔♠ f ✳ ❑➼ ❤✐➺✉ n(r, 1/f ) ❧➔ sè ❦❤æ♥❣ ✤✐➸♠ ❦➸ ❝↔ ❜ë✐✱ n(r, 1/f ) ❧➔ sè ❦❤æ♥❣ ✤✐➸♠ ❦❤æ♥❣ ❦➸ ❜ë✐ ❝õ❛ f ✱ n(r, f ) ❧➔ sè ❝ü❝ ✤✐➸♠ ❦➸ ❝↔ ❜ë✐✱ n(r, f ) ❧➔ sè ❝ü❝ ✤✐➸♠ ❦❤æ♥❣ ❦➸ ❜ë✐ ❝õ❛ f tr♦♥❣ Dr ợ ởt số ữỡ nk (r, f ) ❧➔ sè ✸ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❝ü❝ ✤✐➸♠ ❜ë✐ ❝❤➦♥ ❜ð✐ k ❝õ❛ f ✭tù❝ ❧➔ ❝ü❝ ✤✐➸♠ ❜ë✐ l > k ❝❤➾ ✤÷đ❝ t➼♥❤ k ❧➛♥ tr♦♥❣ tê♥❣ nk (r, f ) tr♦♥❣ Dr ✳ ✣à♥❤ ♥❣❤➽❛ ✶✳✷✳ ❍➔♠ r N (r, f ) = n(t, f ) − n(0, f ) dt + n(0, f ) log r t ✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ ✤➳♠ ❦➸ ❝↔ ❜ë✐ ❝õ❛ f ✭❝á♥ ❣å✐ ❧➔ ❤➔♠ ✤➳♠ t↕✐ ❝→❝ ❝ü❝ ✤✐➸♠✮✳ ❍➔♠ r n(t, f ) − n(0, f ) dt + n(0, f ) log r t N (r, f ) = ✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ ✤➳♠ ❦❤ỉ♥❣ ❦➸ ❜ë✐✳ ❍➔♠ r nk (r, f ) − nk (0, f ) + nk (0, f ) log r t Nk (r, f ) = ✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ ✤➳♠ ❜ë✐ ❝❤➦♥ ❜ð✐ k✱ tr♦♥❣ ✤â n(0, f ) = lim n(t, f )❀ t→0 n(0, f ) = lim n(t, f )❀ nk (0, f ) = lim nk (r, f )✳ ❙è k tr♦♥❣ nk (r, f ) ✤÷đ❝ t→0 t→0 ❣å✐ ❧➔ ❝❤➾ sè ❜ë✐ ❜à ❝❤➦♥✳ ❚❛ ❦➼ ❤✐➺✉✿ 1 Z(r, f ) = N (r, ); Z(r, f ) = N (r, ); Zk (r, f ) = Nk (r, ) f f f ✣à♥❤ ♥❣❤➽❛ ✶✳✸✳ ❍➔♠ T (r, f ) = m(r, f ) + N (r, f ) ❣å✐ ❧➔ ❤➔♠ ✤➦❝ tr÷♥❣ ❝õ❛ ❤➔♠ f ✳ ❈→❝ ❤➔♠ ✤➦❝ tr÷♥❣ T (r, f ) ❤➔♠ ①➜♣ ①➾ m(r, f ) ✈➔ ❤➔♠ ✤➳♠ N (r, f ) ❧➔ ❜❛ ❤➔♠ ỡ tr ỵ tt ố tr õ ỏ ỵ tt ❝ù✉ q✉❛♥ ❤➺ ❣✐ú❛ tè❝ ✤ë t➠♥❣ ❝õ❛ ❜❛ ❤➔♠✳ ỵ s tr ởt số t t ❝ì ❜↔♥ ❝õ❛ ❤➔♠ ①➜♣ ①➾✱ ❤➔♠ ✤➳♠✱ ❤➔♠ ✤➦❝ tr÷♥❣✳ ✹ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❇ê ✤➲ ✶✳✶✳ ❈❤♦ ❝→❝ ❤➔♠ ♣❤➙♥ ❤➻♥❤ f1, f2, , fp✱ ❦❤✐ ✤â ✿ p (1) p fν ) ≤ m(r, ν=1 p (2) ν=1 p fν ) ≤ m(r, ν=1 p (3) fν ) ≤ N (r, fν ) ≤ N (r, N (r, fν ); ν=1 p fν ) ≤ T (r, ν=1 p (6) N (r, fν ); ν=1 p ν=1 p (5) m(r, fν ); ν=1 p ν=1 p (4) m(r, fν ) + log p; T (r, fν ) + log p; ν=1 p fν ) ≤ T (r, ν=1 T (r, f ) =1 ỵ A(C) ❝→❝ ❤➔♠ ❝❤➾♥❤ ❤➻♥❤ tr➯♥ C✱ M(C) ❧➔ tr÷í♥❣ ❝→❝ ❤➔♠ ♣❤➙♥ ❤➻♥❤ tr➯♥ C✳ ❇ê ✤➲ ✶✳✷✳ ❈❤♦ f, g ∈ M(C), a ∈ C ✈➔ P (f ) ∈ C[x] ❧➔ ♠ët ✤❛ t❤ù❝ ❜➟❝ q ✳ ❑❤✐ ✤â T (r, f + g) ≤ T (r, f ) + T (r, g) + O(1), T (r, f g) ≤ T (r, f ) + T (r, g), T (r, f − a) = T (r, f ) + O(1), T (r, ) = T (r, f ) + O(1), f T (r, P (f )) = qT (r, f ) + O(1) ❇ê ✤➲ ✶✳✸✳ ❈❤♦ f, g ∈ M(C), ❦❤✐ ✤â Z(r, f − a) ≤ T (r, f ) + O(1), ∀a ∈ C, m(r, f g) ≤ m(r, f ) + m(r, g), N (r, f ) = N (r, f ) + N (r, f ), Z(r, f ) ≤ Z(r, f ) + N (r, f ) + Sf (r) ✺ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ✭✷✳✶✺✮ s✉② r❛ (n + k + 1)(T (r, f ) + T (r, g)) ≤5(T (r, f ) + T (r, g)) + (5 − k2 )(Z(r, f − a2 ) + Z(r, g − a2 )) l (4 − ki )((Z(r, f − ) + i=3 + Z(r, g − ))) + 5(N (r, f ) + N (r, g)) + k(T (r, f ) + T (r, g)) + 6T (r, α) − log r + O(1), ✭✷✳✶✻✮ ❞♦ ✤â (n + k + 1)(T (r, f ) + T (r, g)) ≤10(T (r, f ) + T (r, g)) l (4 − ki )((Z(r, f − ) + Z(r, g − ))) + i=3 + (5 − k2 )((Z(r, f − a2 ) + Z(r, g − a2 )) + k(T (r, f ) + T (r, g)) + 6T (r, α) − log r + O(1)), ❞♦ ✤â n(T (r, f ) + T (r, g)) ≤9(T (r, f ) + T (r, g)) + (5 − k2 )((Z(r, f − a2 ) l + Z(r, g − a2 )) + (4 − ki )((Z(r, f − ) i=3 + Z(r, g − ))) + 6T (r, α) − log r + O(1)) ✭✷✳✶✼✮ ❑❤✐ ✤â (5 − k2)(Z(r, f − a2) + Z(r, g − a2)) ≤ max(0, − k2)(T (r, f ) + T (r, g)) + O(1) ✈➔ ➼t ♥❤➜t ✈ỵ✐ ♠é✐ i = 3, , l✱ t❛ ❝â (4 − ki )(Z(r, f − ) + Z(r, g − )) ≤ max(0, − ki )(T (r, f ) + T (r, g)) + O(1) ❇➙② ❣✐í ❣✐↔ sû s5 > 0✳ ✣✐➲✉ ✤â ❝â ♥❣❤➽❛ r➡♥❣ ki 5✱ ∀i = 3, , u5 ✈ỵ✐ l 5✳ ❈❤ó♥❣ t❛ t❤➜② r➡♥❣ ❝❤➾ sè i ❧ỵ♥ ❤ì♥ ❤♦➦❝ ❜➡♥❣ s❛♦ ❝❤♦ ki u5 ữỡ tỹ ợ ộ m > 5✱ ❝❤➾ sè ❝❛♦ ❤ì♥ ❤♦➦❝ ❜➡♥❣ s❛♦ ❝❤♦ ki m ❧➔ um − 1✳ ✸✼ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ●✐↔ sû E = Cp ỵ õ t õ u5 Z(r, f − ) (u5 − 3)T (r, f ) − log r + 0(1) i=3 ✈➔ ✈ỵ✐ ♠é✐ m 6✱ um Z(r, g − ) (um − 2)T (r, g) − log r + O(1), i=3 ❤♦➦❝ ❤♦➦❝ u5 Z(r, f − ) s5 T (r, f ) − log r + O(1), Z(r, g − ) sm T (r, g) − log r + O(1), i=3 um i=3 tr ỵ ✷✳✶✶✳ ❉♦ ✤â✱ t❤❡♦ ✭✷✳✶✼✮ ❝❤ó♥❣ t❛ ❝â n(T (r, f ) + T (r, g)) ≤9(T (r, f ) + T (r, g)) + max(0, − k2 )(Z(r, f − a2 ) l + Z(r, g − a2 )) + max(0, − ki )(Z(r, f − ) i=3 ∞ + Z(r, g − )) − sm (T (r, f ) + T (r, g)) m=5 ✭✷✳✶✽✮ + 6T (r, α) − log r + O(1), ✈➻ ✈➟② ∞ l n ≤ + max(5 − k2 ) + max(0, − ki ) − i=3 sm , m=5 ♠➙✉ t❤✉➝♥ ✈ỵ✐ ❣✐↔ t❤✐➳t ❝õ❛ ỵ tr ỵ r ỵ t õ T (r, ) log r + O(1) tr ỵ ✷✳✶✶✱ T (r, α) = 0✳ ❉♦ ✤â t❤❡♦ ✸✽ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ✭✷✳✽✮ ♥❣❤➽❛ ❧➔ n(T (r, f ) + T (r, g)) ≤9(T (r, f ) + T (r, g)) + max(0, − k2 )(Z(r, f − a2 ) l + Z(r, g − a2 )) + max(0, − ki )(Z(r, f − ) i=3 ∞ + Z(r, g − )) − sm (T (r, f ) + T (r, g)) m=5 − log r + O(1), ✈➻ ✈➟② ∞ l n < + max(0, − k2 ) + max(0, − ki ) − sm , m=5 i=3 ữ t ợ t❤✐➳t ∞ l n + max(5 − k2 ) + max(0, − ki ) − min(2l, sm ) m=5 i=3 ❚✐➳♣ t❤❡♦✱ ❝❤ó♥❣ t❛ ①➨t tr÷í♥❣ ❤đ♣ ♣❤ù❝✿ E = C✳ ❈è ✤à♥❤ t➜t ❝↔ ❝→❝ ❜➜t ✤➥♥❣ t❤ù❝ ð tr➯♥ ❝❤➾ t❤❛② t❤➳ ♠é✐ ❜✐➸✉ t❤ù❝ −q log r ❜ð✐ Sf,(r) + Sg (r)✳ ❚✉② ♥❤✐➯♥✱ tr♦♥❣ trữớ ủ ổ ỵ ú t ỵ u5 ((Z(r, f − ) + Z(r, g − ) (u5 − 4)(T (r, f ) + T (r, g)) i=3 = t5 (T (r, f ) + T (r, g)), um ((Z(r, f − ) + Z(r, g − ) (um − 3)(T (r, f ) + T (r, g)) i=3 = tm (T (r, f ) + T (r, g)) ❱➻ ✈➟② t❛ t❤✉ ✤÷đ❝ ∞ l n ≤ + max(5 − k2 ) + max(0, − ki ) − i=3 tm m=5 t ỵ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈✉è✐ ❝ị♥❣ ①➨t tr÷í♥❣ ❤đ♣ tr♦♥❣ ỵ N (r, f ) = N (r, g) = 0✱ t❤❡♦ ✭✷✳✶✻✮ t❛ t❤✉ ✤÷đ❝ (n + k + 1)(T (r, f ) + T (r, g)) ≤5(T (r, f ) + T (r, g)) + (5 − k2 )(Z(r, f − a2 ) l + Z(r, g − a2 )) + (4 − ki )((Z(r, f − ) i=3 + Z(r, g − ))) + k(T (r, f ) + T (r, g)) + 6T (r, α) + Sf (r) + Sg (r) t ỵ f ✈➔ g✱ ❜➙② ❣✐í ❧➔ ❤➔♠ ♥❣✉②➯♥✱ t❛ ❝â u5 Z(r, f − ) (u5 − 3)T (r, f ) = s5 T (r, f ), Z(r, g − ) (u5 − 3)T (r, g) = s5 T (r, g), i=3 u5 i=3 um ((Z(r, f − ) (um − 2)T (r, f ) = sm T (r, f ), i=3 um Z(r, g − ) ❉♦ ✤â✱ (um − 2)T (r, g) = sm T (r, g) i=3 ∞ l n + k + ≤ + k + max(0, − k2 ) + max(0, − ki ) − m=1 i=3 ✈➻ ✈➟② ∞ l n ≤ + max(0, − k2 ) + sm , max(0, − ki ) − sm , m=1 i=3 ♠➙✉ t❤✉➝♥ ✈ỵ✐ ❝→❝ tt ỵ ữ tr tt ỵ ự r F,G ỗ t ổ ứ ✤â✱ ❝❤ó♥❣ t❛ ❝â t❤➸ ❣✐↔ t❤✐➳t r➡♥❣ ΨF,G = tr ộ ỵ ữ ỵ r ú t ❝â t❤➸ ✈✐➳t ΨF,G = φ φ ✈ỵ✐ φ = ( (F F− 1)2 )( (G G− 1) ) ✹✵ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❱➻ F,G = tỗ t A, B E s ❝❤♦ ✭✷✳✶✾✮ A = + B, G−1 F −1 A = ú ỵ r Z(r, f ) ≤ T (r, f ), N (r, f ) ≤ T (r, f )Z(r, f − ) ≤ T (r, f − ) ≤ T (r, f ) + 0(1), i = 2, , l, ✈➔ Z(r, f ) ≤ T (r, f ) ≤ 2T (r, f ) + 0(1) ❚÷ì♥❣ tü ❝❤♦ g ✈➔ g ✳ ❍ì♥ ♥ú❛✱ ♥➳✉ E = Cp t❤❡♦ ❇ê ✤➲ ✷✳✹ ❝❤ó♥❣ t❛ ❝â T (r, F ) (n + k)T (r, f ), ✭✷✳✷✵✮ ♥➳✉ E = C✱ t❛ ❝â T (r, F ) (n + k)T (r, f ) − m(r, ✭✷✳✷✶✮ ) + Sf (r) f ❈❤ó♥❣ t❛ s➩ ❝❤➾ r❛ r➡♥❣ F = G tr♦♥❣ ộ ỵ t ú t t r t tt tt tr ỵ t ❝â n + k 2l + ✭✷✳✷✷✮ ✈➔ tr♦♥❣ ỵ t õ n + k 2l + ✭✷✳✷✸✮ ❚❛ ①➨t ❤❛✐ tr÷í♥❣ ❤đ♣✿ B = ✈➔ B = 0✳ ❚r÷í♥❣ ❤đ♣ ❇❂ ✵ ●✐↔ sû A = 1✳ ❙❛✉ ✤â t❤❡♦ ✭✷✳✶✾✮✱ t❛ ❝â F = AG + (1 − A)✳ ❚r÷í♥❣ ❤đ♣ E = Cp ỵ F t❛ ❝â T (r, F ) ≤Z(r, F ) + Z(r, F − (1 − A)) + N (r, F ) − log r + O(1) l ≤Z(r, f ) + l Z(r, f − ) + Z(r, f ) + Z(r, g) + i=2 Z(r, g − ) i=2 + Z(r, g ) + N (r, f ) − log r + O(1) ✭✷✳✷✹✮ ✹✶ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❚❤❡♦ ✭✷✳✷✵✮ ✈➔ ✭✷✳✷✹✮✱ t❛ ❝â (n + k)T (r, f ) ≤Z(r, F ) + Z(r, F − (1 − A)) + N (r, F ) − log r + O(1) l Z(r, f − ) + Z(r, f ) + Z(r, g) ≤Z(r, f ) + i=2 l Z(r, g − ) + Z(r, g ) + N (r, f ) − log r + O(1) + i=2 ✭✷✳✷✺✮ ❚❤❡♦ ✭✷✳✷✺✮✱ t❛ ❝â (n + k)T (r, f ) ≤Z(r, F ) + Z(r, F − (1 − A)) + N (r, F ) − log r + O(1) l ≤Z(r, f ) + Z(r, f − ) + Z(r, f ) + Z(r, g) i=2 l Z(r, g − ) + Z(r, g ) + N (r, f ) − log r + O(1), + i=2 ✈➻ ✈➟② l (n + k)T (r, f ) ≤Z(r, f ) + l Z(r, f − ) + Z(r, g) + i=2 Z(r, g − ) i=2 + N (r, f ) + Z(r, g ) + Z(r, f ) − log r + O(1) ✭✷✳✷✻✮ ❑❤✐ ✤â✱ t❤❡♦ ❇ê ✤➲ ✷✳✹✱ t❛ rót r❛ ✤✐➲✉ ❦✐➺♥ s❛✉ ✤➙② tø ✭✷✳✷✻✮ (n + k)T (r, f ) ≤ (l + 3)T (r, f ) + (l + 2)T (r, g) − log r + O(1) ✭✷✳✷✼✮ ❱➻ f ✈➔ g ❝ị♥❣ ♠ët ❣✐↔ t❤✐➳t✱ t❛ ❝ơ♥❣ ❝â (n + k)T (r, g) ≤ (l + 3)T (r, g) + (l + 2)T (r, f ) − log r + O(1) ✭✷✳✷✽✮ ❉♦ ✤â✱ ❦➳t ❤ñ♣ ✭✷✳✷✼✮ ✈➔ ✭✷✳✷✽✮✱ t❛ ❝â (n + k)[T (r, f ) + T (r, g)] ≤ (2l + 5)[T (r, f ) + T (r, g)] − log r + O(1), ✈➻ ✈➟② n + k < 2l + ♠➙✉ t❤✉➝♥ ✈ỵ✐ ✭✷✳✷✸✮ ✤➣ ❝❤ù♥❣ ♠✐♥❤ r➡♥❣ A B = tr ỵ = ✭✷✳✷✾✮ ❧➔ ❦❤æ♥❣ ①↔② r❛ ❦❤✐ ✹✷ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❚✐➳♣ t❤❡♦ t❛ ①➨t tr÷í♥❣ ❤đ♣ E = C✳ ❚❤❡♦ ✭✷✳✷✶✮✱ ❝❤ó♥❣ t❛ ❝â (n + k)T (r, f ) ≤Z(r, F ) + Z(r, F − (1 − A)) + N (r, F ) + m(r, l ≤Z(r, f ) + ) + SF (r) f )Z(r, g) f Z(r, f − ) + Z(r, f ) + m(r, i=2 l Z(r, g − ) + Z(r, g ) + N (r, f ) + Sf (r) + Sg (r) + i=2 Ð ✤➙② ❝❤ó♥❣ t❛ ♥❤➟♥ t❤➜② Z(r, f ) + m(r, 1 ) ≤ T (r, ) = T (r, f ) + O(1), f f ❞♦ ✤â l (n + k)T (r, f ) ≤Z(r, f ) + l Z(r, f − ) + Z(r, g) + i=2 Z(r, g − ) i=2 + N (r, f ) + Z(r, g ) + T (r, f ) + Sf (r) + Sg (r) ✭✷✳✸✵✮ ❑❤✐ ✤â ①➨t ❜➜t ✤➥♥❣ t❤ù❝ tr♦♥❣ ✭✷✳✸✵✮✱ t÷ì♥❣ tü t❛ s✉② r❛ (n + k)T (r, f ) ≤ (l + 3)T (r, f ) + (l + 2)T (r, g) + Sf (r) + Sg (r) ✭✷✳✸✶✮ ❱➻ f ✈➔ g t❤ä❛ ♠➣♥ ❝ò♥❣ ♠ët ❣✐↔ t❤✐➳t✱ ❝❤ó♥❣ t❛ ❝â (n + k)T (r, g) ≤ (l + 3)T (r, g) + (l + 2)T (r, f ) + Sf (r) + Sg (r) ✭✷✳✸✷✮ ❉♦ ✤â ❦➳t ❤ñ♣ ✭✷✳✸✶✮ ✈➔ ✭✷✳✸✷✮✱ t❛ ❝â (n + k)[T (r, f ) + T (r, g)] ≤ (2l + 5)[T (r, f ) + T (r, g)] + Sf (r) + Sg (r), ❞♦ ✤â n + k ≤ 2l + 5✱ ♠➙✉ t❤✉➝♥ ✈ỵ✐ ✭✷✳✷✸✮ ❝❤ù♥❣ ♠✐♥❤ r➡♥❣ A = ❧➔ ❦❤æ♥❣ ①↔② r❛ ❦❤✐ B = tr ỵ t trữớ ủ tr ỵ tt ú t ❝â ∞ l k1 + max(0, − k2 ) + max(0, − ki ) − min(2l, sm ), m=5 i=3 ❞♦ ✤â ∞ n+k 10 + 4(l − 2) − ∞ sm = 4l + − m=5 sm m=5 ✹✸ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❱➻ N (r, f ) = N (r, g) = 0, sỷ ỵ t♦➔♥ ❜ë ❤➔♠ ✈➔ t❛ ❝â u5 Z(r, f − ) (u5 − 3)T (r, f ) + Sf (r) + Sg (r), Z(r, g − ) (um − 2)T (r, g) + Sf (r) + Sg (r), i=3 ✈➔ ✈ỵ✐ m 6✱ um i=3 ❤♦➦❝ u5 Z(r, f − ) s5 T (r, f ) + Sf (r) + Sg (r) Z(r, g − ) sm T (r, g) + Sf (r) + Sg (r) i=3 ✈➔ um i=3 ❇➙② ❣✐í✱ t❤❡♦ ✭✷✳✶✻✮ t❛ ❝â (n + k + 1)(T (r, f ) + T (r, g)) ≤5(T (r, f ) + T (r, g)) + (5 − k2 )(Z(r, f − a2 ) + Z(r, g − a2 )) l (4 − ki )(Z(r, f − ) + Z(r, g − )) + k(T (r, f ) + i=3 + T (r, g)) + Sf (r) + Sg (r), ✈➻ ✈➟② ∞ n + k ≤ + 4(l − 2) − ∞ sj = 2l + − j=5 sm , m=5 ♠➙✉ t❤✉➝♥ ❣✐↔ t❤✐➳t n + k 2l + ỵ õ tt A = ❧➔ s❛✐ ❦❤✐ B = 0✳ ❇➙② ❣✐í ❝❤ó♥❣ t❛ ❣✐↔ sû B = ✹✹ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❚r÷í♥❣ ❤đ♣ B = ❳➨t tr÷í♥❣ ❤đ♣ ✤➛✉ t✐➯♥ ❦❤✐ E = Cp✱ tự tr ỵ tr ỵ ú t õ Z(r, F ) + Z(r, G) + N (r, F ) + N (r, G) l ≤Z(r, f ) + l Z(r, f − ) + Z(r, f ) + Z(r, g) + i=2 Z(r, g − ) i=2 + Z(r, g ) + N (r, f ) + N (r, g) + 4T (r, α) + O(1) ≤(l + 1)[T (r, f ) + T (r, g)] + T (r, f ) + T (r, g ) + 6T (r, α) + O(1) ≤(l + 3)(T (r, f ) + T (r, g)) + 6T (r, α) − log r, ❞♦ ✤â t❤❡♦ ❇ê ✤➲ ✷✳✹✱ Z(r, F ) + Z(r, G) + N (r, F ) + N (r, G) ≤(l + 3)(T (r, f ) + 6T (r, α) ✭✷✳✸✸✮ ❍ì♥ ♥ú❛✱ t❤❡♦ ✭✷✳✶✾✮✱ T (r, F ) = T (r, G) + O(1) ✈➔ t❤❡♦ ❇ê ✤➲ ✷✳✹✱ t❛ − log r + O(1)) ❝â (T (r, F ) + T (r, α)) + O(1) n+k ✈➔ T (r, g) ≤ n +1 k (T (r, G) + T (r, α)) + O(1) T (r, f ) ≤ ❉♦ ✤â✱ (T (r, F ) + T (r, α)) + O(1), n+k ✭✷✳✸✹❛✮ Z(r, F ) + Z(r, G) + N (r, F ) + N (r, G) 2l + 2l + ≤ T (r, F ) + + T (r, α) − log r + O(1) n+k n+k ✭✷✳✸✹❜✮ T (r, f ) + T (r, g) ≤ ❇➙② ❣✐í✱ t❤❡♦ ❝→❝ ❣✐↔ t❤✐➳t tr♦♥❣ ❝→❝ ỵ t ú t õ n + k 2l + 7✳ ❉♦ ✤â t❤❡♦ q✉❛♥ ❤➺ ✭✷✳✸✹❜✮ t❛ ❝â Z(r, F ) + Z(r, G) + N (r, F ) + N (r, G) 2l + 2l + ≤ T (r, F ) + + T (r, α) + O(1), 2n + 2n + ✭✷✳✸✺✮ ✹✺ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ✈➔ t÷ì♥❣ tü Z(r, F ) + Z(r, G) + N (r, F ) + N (r, G) 2l + 2l + T (r, G) + + T (r, α) + O(1), ≤ 2n + 2n + ✭✷✳✸✻✮ ✈➻ ✈➟② lim sup( r→∞ Z(r, F ) + Z(r, G) + N (r, F ) + N (r, G) ) < max(T (r, F ), T (r, G)) ❉♦ ✤â✱ t❤❡♦ ỵ ❝❤ó♥❣ t❛ ❝â F = G✱ ❤♦➦❝ F G = 1✳ ●✐↔ sû F G = 1✳ ❑❤✐ ✤â f P (f )g P (g) = α2✳ ◆❤÷♥❣ tr♦♥❣ ❝→❝ ỵ ú t tt r n = k + ✈➔ ♥➳✉ l = 2✱ t❤➻ n = 2k, 2k + 1, 3k + ✈➔ ♥➳✉ l = t❤➻ n = k, 3k2 − k, 3k3 − k ✳ ❉♦ ✤â✱ ♠➙✉ t❤✉➝♥ ỵ õ tt F G = ❧➔ ❦❤ỉ♥❣ t❤➸ ①↔② r❛ ✈➔ ❞♦ ✤â ❝❤ó♥❣ t❛ ❝â F = G✳ ❇➙② ❣✐í ①➨t tr÷í♥❣ ❤đ♣ E = C tự tr ỵ ự tữỡ tỹ ợ trữớ ủ E = Cp✳ ❚❛ ❝â l Z(r, F ) ≤ Z(r, f ) + Z(r, f − ) + Z(r, f ) + Sf (r), i=2 N (r, F ) ≤ N (r, f ) + Sf (r), ✈➔ t÷ì♥❣ tü ❝❤♦ G✱ ✈➻ ✈➟② ❝❤ó♥❣ t❛ ❝â t❤➸ s✉② r❛ Z(r, F ) + Z(r, G) + N (r, F ) + N (r, G) l ≤Z(r, f ) + l Z(r, f − ) + Z(r, f ) + Z(r, g) + i=2 Z(r, g − ) i=2 + Z(r, g ) + N (r, f ) + N (r, g) + Sf (r) + Sg (r) ✭✷✳✸✼✮ ❍ì♥ ♥ú❛✱ t❤❡♦ ✭✷✳✶✾✮✱ T (r, F ) = T (r, G) + 0(1) ✈➔ t❤❡♦ ❇ê ✤➲ ✷✳✹✱ t❛ ❝â 1 T (r, F ) + Sf (r) ✈➔ T (r, g) ≤ T (r, G) + Sg (r) T (r, f ) ≤ n+k n+k ❉♦ ✤â✱ ≤(l + 2)[T (r, f ) + T (r, g)] + Sf (r) + Sg (r) T (r, f ) + T (r, g) ≤ T (r, F ) + Sf (r) + Sg (r) n+k ✹✻ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ◆❤÷ ✈➟②✱ ✭✷✳✸✼✮ ❝â ♥❣❤➽❛ ❧➔ Z(r, F ) + Z(r, G) + N (r, F ) + N (r, G) ≤ 2l + T (r, F ) + Sf (r) + Sg (r) n+k ❇➙② ❣✐í✱ ♥❤÷ tr♦♥❣ ❝→❝ ỵ ú t õ t tr n + k 2l + tr ỵ ✷✳✶✷✳ ❉♦ ✤â✱ ❜➜t ✤➥♥❣ t❤ù❝ tr➯♥ ❝â ♥❣❤➽❛ ❧➔ Z(r, F ) + Z(r, G) + N (r, F ) + N (r, G) ≤ 2l + T (r, F ) + Sf (r) + Sg (r) 2n + ✈➔ t÷ì♥❣ tü Z(r, F ) + Z(r, G) + N (r, F ) + N (r, G) ≤ 2l + T (r, G) + Sf (r) + Sg (r), 2l + ❞♦ ✤â t❤❡♦ ❇ê ✤➲ ✷✳✾ ❧↕✐ ♠ët ❧➛♥ ♥ú❛✱ ❝❤ó♥❣ t❛ ❝â F = G ❤♦➦❝ F G = 1✳ ❑❤✐ ✤â✱ t❤❡♦ ỵ ữ tr ỵ tt ỵ trứ trữớ ❤ñ♣ F G = ✈➔ ❞♦ ✤â F = G t tr trữớ ủ ỵ ❦➳t ❤ñ♣ ✭✷✳✸✼✮ ♥❣❤➽❛ ❧➔ Z(r, F ) + Z(r, G) ≤ (l + 2)[T (r, f ) + T (r, g)] + Sf (r) + Sg (r) ✭✷✳✸✽✮ ❍ì♥ ♥ú❛✱ t❤❡♦ ✭✷✳✶✾✮✱ T (r, F ) = T (r, G) + 0(1) ✈➔ t❤❡♦ ❇ê ✤➲ ✷✳✹✱ t❛ ❝â T (r, f ) ≤ 1 T (r, F ) + Sf (r) ✈➔ T (r, g) ≤ T (r, G) + Sg (r) n+k n+k ❉♦ ✤â✱ T (r, F ) + Sf (r) + Sg (r) n+k T (r, f ) + T (r, g) ≤ ◆❤÷ ✈➟② ✭✷✳✸✼✮ ❝â ♥❣❤➽❛ ❧➔ l Z(r, F ) + Z(r, G) ≤Z(r, f ) + Z(r, f − ) + Z(r, f ) + Z(r, g) i=2 l Z(r, g − ) + Z(r, g ) + Sf (r) + Sg (r) + i=2 ≤4 [T (r, f ) + T (r, g)] + Sf (r) + Sg (r) ❱➻ ✈➟②✱ Z(r, F ) + Z(r, G) ≤ 2l + T (r, F ) + Sf (r) + Sg (r), n+k ✹✼ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❞♦ ✤â t❤❡♦ ✭✷✳✷✸✮ t❛ ❝â Z(r, F ) + Z(r, G) ≤ 2l + T (r, F ) + Sf (r) + Sg (r) 2l + ▼ët ❝→❝❤ t÷ì♥❣ tü✱ ❝❤ù♥❣ ♠✐♥❤ r➡♥❣ F = G ❤♦➦❝ F G = 1✳ ◆❤÷♥❣ t ỵ F G = ổ t❤➸ ①↔② r❛✳ ❉♦ ✤â F = G✳ ◆❤÷ ✈➟②✱ tr ỵ t ự ♠✐♥❤ r➡♥❣ F = G✱ tù❝ ❧➔ f P (f ) = g P (g)✳ ❑➳t q✉↔ ❧➔ P (f ) − P (g) ❧➔ ❤➡♥❣ sè C ✳ ❑❤✐ ✤â ❜➡♥❣ ❇ê ✤➲ ✷✳✽✱ ▼➺♥❤ ✤➲ ✷✳✶ ✈➔ tr♦♥❣ ỵ ú t õ P (f ) = P (g)✳ ❚÷ì♥❣ tü t❤❡♦ ❇ê ✤➲ tr ỵ ✷✳✶✸✱ ❝❤ó♥❣ t❛ ❝â P (f ) = P (g)✳ ố ũ tr ộ ỵ P ởt t❤ù❝ ❞✉② ♥❤➜t ❝❤♦ t➟♣ ❤đ♣ ❝→❝ ❤➔♠ ❝❤ó♥❣ t❛ ✤❛♥❣ ①➨t✳ ❉♦ ✤â✱ f = g✳ ✹✽ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❑➌❚ ▲❯❾◆ ❚r♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔② ❝❤ó♥❣ tỉ✐ ♥❣❤✐➯♥ ❝ù✉ ✈➜♥ ✤➲ ❞✉② ♥❤➜t ❝õ❛ ❤➔♠ ♣❤➙♥ ❤➻♥❤ ❦❤✐ ❤❛✐ ✤❛ t❤ù❝ ❝❤ù❛ ✤↕♦ ❤➔♠ ❜➟❝ ♥❤➜t ❝õ❛ ❝❤ó♥❣ ❝❤✉♥❣ ♥❤❛✉ ♠ët ❤➔♠ ♥❤ä✳ ữỡ ợ t ởt số ỡ tr ỵ tt ố tr ỗ ỵ ỡ tr ỵ tt tr tr÷í♥❣ ❤đ♣ ♣❤ù❝ ✈➔ tr÷í♥❣ ❤đ♣ p−❛❞✐❝ ❝ị♥❣ ♠ët sè ❦➳t q✉↔✱ ❇ê ✤➲ ✈➲ t➼♥❤ ❝❤➜t ❝➛♥ t❤✐➳t ✤➸ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ❦➳t q✉↔ ❝❤➼♥❤ tr♦♥❣ ❝❤÷ì♥❣ ✷✳ ❈❤÷ì♥❣ ✷ tr➻♥❤ ❜➔② ✈➜♥ ✤➲ ❞✉② ♥❤➜t ❦❤✐ f P (f ) ✈➔ g P (g) ❝❤✉♥❣ ♥❤❛✉ ♠ët ❤➔♠ ♥❤ä tr♦♥❣ ❤❛✐ tr÷í♥❣ ❤đ♣ ♣❤ù❝ ✈➔ tr÷í♥❣ ❤đ♣ p✲❛❞✐❝✳ t ỵ ỵ ❝❤♦ ❝❤ó♥❣ t❛ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❤➔♠ ♣❤➙♥ ❤➻♥❤ tr♦♥❣ trữớ ủ p ỵ ỵ ❝❤♦ ❝❤ó♥❣ t❛ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❤➔♠ ♣❤➙♥ ❤➻♥❤ tr♦♥❣ tr÷í♥❣ ❤đ♣ ♣❤ù❝✳ ✹✾ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❬✶❪ ❆◆✱ ❚✳ ❚✳ ❍✳✱ ❉■❊P✱ ◆✳ ❚✳ ◆✳ ✭✷✵✶✸✮✱ ✧●❡♥✉s ♦♥❡ ❢❛❝t♦r ♦❢ ❝✉r✈❡s ❞❡♥❡❞ ❜② s❡♣❛r❛t❡❞ ✈❛r✐❛❜❧❡ ♣♦❧②♥♦♠✐❛❧s✧✱ ❏✳ ◆✉♠❜❡r✳ ❚❤❡♦r②✱ ✶✸✸✱ ♣♣ ✷✻✶✻✲✷✻✸✹✳ ❬✷❪ ❇❖❯❙❙❆❋✱ ❑✳✱ ❊❙❙❈❆❙❙❯❚✱ ❆✳✱ ❖❏❊❉❆✱ ❏✳ ✭✷✵✶✷✮✱ ✧♣✲❛❞✐❝ ♠❡r♦✲ ♠♦r♣❤✐❝ ❢✉♥❝t✐♦♥s ❢✬P✬✭❢✮✱ ❣✬P✬✭❣✮ s❤❛r✐♥❣ ❛ s♠❛❧❧ ❢✉♥❝t✐♦♥✧✱ ❇✉❧❧❡t✐♥ ❞❡s ❙❝✐❡♥❡s ▼❛t❤❡s♠❛t✐q✉❡s✱ ✶✸✻✭✷✮✱ ♣♣ ✶✼✷✲✷✵✵ ❬✸❪ ❇❖❯❙❙❆❋✱ ❑✳✱ ❊❙❙❈❆❙❙❯❚✱ ❆✳✱ ❖❏❊❉❆✱ ❏✳ ✭✷✵✶✸✮✱ ✧❈♦♠♣❧❡① ♠❡r♦♠♦r♣❤✐❝ ❢✉♥❝t✐♦♥s ❢✬P✬✭❢✮✱ ❣✬P✬✭❣✮ s❤❛r✐♥❣ ❛ s♠❛❧❧ ❢✉♥❝t✐♦♥✧✱ ■♥❞❛❣❛t✐♦♥❡s✱ ✷✹✭✶✮✱ ♣♣ ✶✺✲✹✶✳ ❬✹❪ ❇❖❯❚❆❇❆❆✱ ❆✳ ✭✶✾✾✵✮✱ ❚❤❡♦r✐❡ ❞❡ ◆❡✈❛♥❧✐♥♥❛ ♣✲❛❞✐q✉❡✱ ▼❛♥✉s❝r✐♣t❛ ▼❛t❤✳✱ ✻✼✱ ♣♣ ✷✺✶✲✷✻✾✳ ❬✺❪ ❊❙❈❆❙❙❯❚✱ ❆✳✭✷✵✵✽✮✱ ✧P✲❛❞✐❝ ✈❛❧✉❡ ❞✐str✐❜✉t✐♦♥✱ ❙♦♠❡ ❚♦♣✐❝s ♦♥ ❱❛❧✉❡ ❉✐str✐❜✉t✐♦♥ ❛♥❞ ❉✐❢❢❡r❡♥t❛❜✐❧✐t② ✐♥ ❈♦♠♣❧❡① ❛♥❞ P✲❆❞✐❝ ❆♥❛❧✲ ②s✐s✧✱ ✹✷✲✶✸✽✳ ▼❛t❤❡♠❛t✐❝s ▼♦♥♦❣r❛♣❤✱ ❙❡r✐❡s ✶✶✱ ❙❝✐❡♥❝❡ Pr❡ss✱ ❇❡✐✲ ❥✐♥❣✳ ❬✻❪ ❋❯❏■▼❖❚❖✱❍✳✭✷✵✵✵✮✱ ✧❖♥ ✉♥✐q✉❡♥❡ss ♦❢ ♠❡r♦♠♦r♣❤✐❝ ❢✉♥❝t✐♦♥s s❤❛r✐♥❣ ❢✐♥✐t❡ s❡ts✧✱ ❆♠❡r✳❏✳▼❛t❤✳✱✶✷✷✭✻✮✱✶✶✼✺✲✶✷✵✸✳ ❬✼❪ ❍❆❨▼❆◆✱❲✳❑✳✭✶✾✼✺✮✱✧▼❡r♦♠♦r♣❤✐❝ ❋✉♥❝t✐♦♥s✧✱ ❖①❢♦r❞ ❯♥✐✈❡rs✐t② Pr❡ss✳ ❬✽❪ ❍✉✱P✳❈✳ ❛♥❞ ❨❆◆●✱❈✳❈✳✭✷✵✵✵✮✱ ✧▼❡r♦♠♦r♣❤✐❝ ❋✉♥❝t✐♦♥s ♦✈❡r ◆♦♥✲ ❆r❝❤✐♠❡❞❡❛♥ ❋✐❡❧❞s✧✱ ❑❧✉✇❡r ❆❝❛❞❡♠✐❝ P✉❜❧✐s❤❡rs✳ ❬✾❪ ❍❯❆✱❳✱ ❨❆◆●✱❈✳❈✳ ✭✶✾✾✼✮✱ ✧❯♥✐q✉❡♥❡ss ❛♥❞ ✈❛❧✉❡✲s❤❛r✐♥❣ ♦❢ ♠❡r♦✲ ♠♦r♣❤✐❝ ❢✉♥❝t✐♦♥s✧✱❆♥♥✳ ❆❝❛❞✳❙❝✐✳❋❡♥♥✳▼❛t❤✳✱✷✷✱✸✾✺✲✹✵✻✳ ✺✵ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❬✶✵❪ ❨■✱❍✳❳✳✱✭✶✾✾✺✮✱ ✧▼❡r♦♠♦r♣❤✐❝ ❢✉♥❝✐t✐♦♥s t❤❛t s❤❛r❡ ♦♥❡ ♦r t✇♦ ✈❛❧✲ ✉❡s✧✱ ❈♦♠♣❧❡① ❱❛r✐❛❜❧❡s ❛♥❞ ❆♣♣❧✐❝❛t✐♦♥s✱ ✷✽✱✶✲✶✶✳ ❬✶✶❪ ❊❙❈❆❙❙❯❚✱ ❆✳✱ ❇❖❯❙❙❆❋✱ ❑✳✱ ❖❏❊❉❆✱ ❏✳ ✭✷✵✶✹✮✱ ✧❈♦♠♣❧❡① ❛♥❞ ♣✲❆❞✐❝ ▼❡r♦♠♦r♣❤✐❝ ❋✉♥❝t✐♦♥s ❢✬P✬✭❢✮✱ ❣✬P✬✭❣✮ ❙❤❛r✐♥❣ ❛ ❙♠❛❧❧ ❋✉♥❝✲ t✐♦♥✧✱ ❆♥❛❧✳ ❚❤❡♦r② ❆♣♣❧✳✱ ✸✵✱ ♣♣ ✺✶✲✽✶✳ ✺✶ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ... HỌC SƯ PHẠM NGUYỄN QUỐC CƯỜNG VẤN ĐỀ DUY NHẤT CỦA HÀM PHÂN HÌNH KHI ĐẠO HÀM CỦA ĐA THỨC CHUNG NHAU MỘT HÀM NHỎ Chun ngành: Tốn Giải tích Mã số: 46 01 02 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn... bày luận văn trung thực, khách quan không trùng lặp với đề tài khác công bố Việt Nam Tôi xin cam đoan thơng tin trích dẫn luận văn ghi rõ nguồn gốc Thái Nguyên, tháng năm 2018 Tác giả luận văn. .. PGS.TS Hà Trần Phương trực tiếp hướng dẫn khoa học tận tình giúp đỡ tơi hồn thành luận văn Tơi xin chân thành cảm Lãnh đạo phòng đào tạo, đặc biệt thầy cô trực tiếp quản lý đào tạo sau đại học, quý

Ngày đăng: 20/12/2022, 20:11