(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi(Luận văn thạc sĩ) Nghiên cứu nâng cao hệ thống làm lạnh của hệ thống điều hòa không khí bằng cách sử dụng bộ tách hơi
LỜI CAM ĐOAN Luận văn học viên nghiên cứu thực hướng dẫn khoa học Thầy PGS.TS Đặng Thành Trung NCS Đoàn Minh Hùng Học viên xin cam đoan nội dung trình bày luận văn học viên tìm hiểu nghiên cứu Các nội dung trích dẫn từ nguồn tài liệu khác có ghi rõ nguồn gốc Tp Hồ Chí Minh, ngày 10 tháng 10 năm 2020 (Ký tên ghi rõ họ tên) Nguyễn Trần Trọng Tuấn LỜI CẢM ƠN Trước hết, học viên xin trân trọng gửi lời cảm ơn chân thành tới Thầy hướng dẫn PGS.TS Đặng Thành Trung NCS Đồn Minh Hùng tận tình hướng dẫn, giúp đỡ tạo điều kiện cho học viên hoàn thành luận văn Xin chân thành cám ơn quý Thầy Cô môn Công nghệ Nhiệt Điện lạnh Trường Đại học Sư Phạm Kỹ Thuật Tp.HCM tận tâm truyền đạt kiến thức suốt trình học cao học học viên Chân thành cảm ơn Ban lãnh đạo quý Thầy Cô đồng nghiệp Bộ môn Điện Lạnh – Khoa Công Nghệ Nhiệt – Lạnh Trường Cao đẳng Kỹ thuật Cao Thắng ln khuyến khích, động viên, giúp đỡ tạo điều kiện cho học viên trình thực luận văn Cuối cùng, học viên muốn cảm ơn gia đình, bạn bè đồng hành động viên suốt thời gian qua Trong q trình hồn thành luận văn, học viên cố gắng nhiên thiếu sót Học viên mong nhận ý kiến đánh giá chân thành quý Thầy Cô để luận văn hoàn thiện Xin chân thành cảm ơn Nguyễn Trần Trọng Tuấn TĨM TẮT Luận văn trình bày kết cải thiện hệ số làm lạnh (COP) máy điều hịa khơng khí hai khối có cơng suất 9000 Btu/h Máy điều hịa khơng khí sử dụng R410A làm môi chất lạnh COP cải thiện cách sử dụng thiết bị tách để cải tiến hệ thống Hệ thống thiết kế để hoạt động hai trường hợp Trường hợp đầu tiên, hỗn hợp bão hịa ẩm mơi chất lạnh áp suất thấp qua tiết lưu (sử dụng ống mao) vào tách Trường hợp thứ hai trực tiếp vào thiết bị bay Cả hai trường hợp thử nghiệm tải nhiệt điều kiện trời Phương thức kiểm chứng thực nhiệt độ ngồi trời phịng với điều kiện vận hành khác Kết cho thấy mức tiêu thụ điện giảm từ 5,9 % đến 10,2 % hệ số làm lạnh thực tế (COP) tăng từ 6,54 % đến 11,36 % Bên cạnh đó, độ giảm áp suất giảm phía hạ áp, nhiệt độ bay hơi, áp suất ngưng tụ độ khô tách cho hai trường hợp trình bày Kết thí nghiệm cho thấy tính khả thi thiết bị tách áp dụng hệ thống điều hịa khơng khí ABSTRACT This thesis presented the results of improvement on the Coefficient of Performance (COP) of split air–conditioner which the cooling capacity of 9000 Btu/h This air–conditioner uses R410A as the refrigerant COP is improved by using an innovative separated–vapor device (flash chamber) in the system The system is designed to operate in two cases The first case, the saturated refrigerant mixture (the liquid and flash gas) at the low pressure passes through the expansion valve (using the capillary tube) and enters the flash chamber The second case is that it directly enters to the evaporator Both cases were experimented in the same heating load and environmental condition The procedure of investigation was implemented in the same temperature in outdoor and indoor, with different the operation conditions The results show that the power consumption reduces from 5.9 % to 10.2 % and the actual coefficient of performance (COP) increases from 6.54 % to 11.36 % Besides that, the pressure drop of the low pressure side, the evaporation temperature, the condensation pressure, and the vapor quality for two cases were also presented The experimental results were reported to show the feasibility of an innovative separated–vapor device which can be applied in air–conditioning systems MỤC LỤC LÝ LỊCH KHOA HỌC LỜI CAM ĐOAN LỜI CẢM ƠN TÓM TẮT MỞ ĐẦU 12 CHƯƠNG I TỔNG QUAN 13 1.1 Tình hình nghiên cứu ngồi nước 13 1.2 Tình hình nghiên cứu nước 23 Tính cấp thiết đề tài 23 1.4 Mục tiêu đề tài 23 1.5 Đối tượng phạm vi nghiên cứu 23 1.6 Phương pháp nghiên cứu 24 1.7 Kế hoạch thực 24 CHƯƠNG II CƠ SỞ LÝ THUYẾT 25 2.1 Lý thuyết truyền nhiệt 25 2.1.1 Trao đổi nhiệt đối lưu 25 2.1.2 Truyền nhiệt qua vách trụ lớp 25 2.1.3 Dẫn nhiệt qua cánh thẳng có tiết diện không đổi 26 2.1.4 Lý thuyết truyền nhiệt với pha biến đổi 26 2.2 Cơ sở lý thuyết điều hịa khơng khí 27 2.2.1 Lý thuyết làm lạnh khơng khí 27 2.2.2 Lý thuyết khơng khí ẩm 27 2.2.3 Xác định lượng nhiệt thừa 27 2.2.4 Xác định lượng ẩm thừa 28 2.2.5 Kiểm tra đọng sương vách 29 2.3 Lý thuyết chu trình lạnh 29 CHƯƠNG III TÍNH TỐN, THIẾT KẾ VÀ THIẾT LẬP THỰC NGHIỆM 33 3.1 Tính tốn hệ thống điều hịa khơng khí 33 3.1.1 Xác định lượng nhiệt thừa 33 3.1.2 Xác định lượng ẩm thừa 36 3.1.3 Kiểm tra đọng sương vách 37 3.1.4 Tính tốn sơ đồ điều hịa khơng khí theo đồ thị I – d 37 3.3 Tính tốn chu trình 39 3.4 Đánh giá hiệu sử dụng tách 40 3.4.1 Trường hợp N - AC 40 3.4.2 Trường hợp F - AC 42 3.5 Tính tốn tách 45 3.6 Thiết kế lắp đặt hệ thống 47 3.6.1 Xây dựng sơ đồ bố trí thiết bị 47 3.6.2 Xây dựng mơ hình thực nghiệm 49 3.7 Thu thập liệu thực nghiệm 55 3.7.1 Đo lưu lượng khơng khí qua dàn 55 3.7.2 Đo lấy tín hiệu nhiệt độ, áp suất 56 CHƯƠNG IV CÁC KẾT QUẢ VÀ THẢO LUẬN 57 4.1 Kết thay đổi nhiệt độ khơng khí ngồi trời phịng đặt tách gần vị trí lắp đặt dàn nóng 57 4.1.1 Độ giảm áp suất từ van tiết lưu đến đầu hút máy nén 57 4.1.2 Điện tiêu thụ 58 4.1.3 Chỉ số hoàn thiện COP 59 4.2 Kết thay đổi nhiệt độ khơng khí ngồi trời phịng đặt tách gần vị trí lắp đặt dàn lạnh 60 4.2.1 Độ giảm áp suất từ van tiết lưu đến đầu hút máy nén 60 4.2.2 Điện tiêu thụ 61 4.2.3 Chỉ số hoàn thiện COP 61 4.2.4 Áp suất ngưng tụ 62 4.2.5 Nhiệt độ bay trước vào dàn lạnh 63 4.2.6 Độ khô tách 64 4.3 Ảnh hưởng nhiệt độ ngồi trời đến thơng số làm việc hệ thống 65 4.4 So sánh thông số điểm nút chu trình lạnh 69 CHƯƠNG V KẾT LUẬN VÀ KIẾN NGHỊ 74 5.1 Kết luận 74 5.2 Kiến nghị 75 TÀI LIỆU THAM KHẢO: 76 DANH SÁCH CÁC BẢNG Bảng 1 Nội dung kế hoạch thực đề tài 24 Bảng Thông số trạng thái điểm nút chu trình 40 Bảng 2.Thông số trạng thái điểm nút trường hợp N - AC 41 Bảng 3.Thông số trạng thái điểm nút trường hợp F - AC 43 Bảng 3.4 Kết tính tốn cho trường hợp N – AC F - AC 44 Bảng So sánh điểm nút chu trình lý thuyết thực tế 69 Bảng So sánh điểm nút chu trình lý thuyết thực tế qua tách 72 DANH SÁCH CÁC HÌNH Hình 1: Hệ thống lạnh cấp có trích trung gian, làm mát trung gian khơng hồn tồn có tiết lưu 13 Hình Đồ thị LgP - h hệ thống lạnh cấp có trích trung gian, làm mát trung gian khơng hồn tồn có tiết lưu 14 Hình Sơ đồ nguyên lý đồ thị p - h cho hai trường hợp: không qua tách (a) qua tách (b) 14 Hình Bộ tách T sử dụng hệ thống điều hịa khơng khí 16 Hình Nghiên cứu ảnh hưởng góc nghiên đầu vào tách 16 Hình 1.Sơ đồ nguyên lý chu trình cấp 29 Hình 2 Đồ thị T – s 30 Hình Sơ đồ bố trí hệ thống phịng nghiên cứu truyền nhiệt 38 Hình Sơ đồ điều hịa khơng khí tuần hồn cấp 38 Hình 3 Đồ thị P-h thể điểm nút tính tốn hệ thống 39 Hình 4.Đồ thị P-h thể điểm nút trường hợp chạy N - AC 41 Hình Đồ thị P-h thể điểm nút trường hợp chạy F - AC 43 Hình Biểu đồ thể kết tính tốn cho trường hợp N – AC F – AC nhiệt độ 10℃ 44 Hình Lựa chọn thơng số kích thước tách 46 Hình Lựa chọn thơng số kích thước tách 46 Hình Bộ tách lắp đặt vào hệ thống thiết kế 47 Hình 10 Sơ đồ hệ thống chi tiết cho trường hợp: 48 Hình 11 Sơ đồ bố trí thí nghiệm [36] 49 Hình 12 Kết nối dàn nóng dàn lạnh 49 Hình 13 Hình ảnh gia cơng kết nối tách 50 Hình 14 Lắp đặt tách dàn lạnh phịng thí nghiệm 50 Hình 15 Vận hành kiểm tra lấy thông số 51 Hình 16 Cảm biến số hóa tín hiệu áp suất kênh 52 Hình 17 Thiết bị đo tốc độ gió 52 Hình 18 Thiết bị đo độ ẩm 53 Hình 19 Đồng hồ đo áp suất đơi HS – 536G – R410A 53 Hình 20 Đồng đồ sử dụng thực nghiệm 54 Hình 21 Đồng hồ vạn 54 Hình 22 Cảm biến đo nhiệt độ 55 Hình 23 Đo lưu lượng khơng khí qua dàn vận tốc kế 56 Hình Mối quan hệ việc giảm áp suất với thay đổi nhiệt độ khơng khí ngồi trời phòng 58 Hình Mối quan hệ điện tiêu thụ với thay đổi nhiệt độ khơng khí ngồi trời phòng 58 Hình Mối quan hệ COP với thay đổi nhiệt độ giữa khơng khí ngồi trời phịng 59 Hình 4.Mối quan hệ việc giảm áp suất với thay đổi nhiệt độ không khí ngồi trời phịng 60 Hình 5.Mối quan hệ điện tiêu thụ với thay đổi nhiệt độ khơng khí ngồi trời phòng 61 Hình Mối quan hệ COP với thay đổi nhiệt độ giữa khơng khí ngồi trời phịng 62 Hình Mối quan hệ việc giảm áp suất ngưng tụ với thay đổi nhiệt độ khơng khí ngồi trời phịng 63 Hình Mối quan hệ nhiệt độ bay trước vào dàn lạnh với thay đổi nhiệt độ khơng khí ngồi trời phòng 64 Hình Mối quan hệ độ khơ tách với thay đổi nhiệt độ không khí ngồi trời phịng 65 Hình 10 Mối quan hệ độ chênh áp suất với thay đổi nhiệt độ ngồi trời 65 Hình 11 Mối quan hệ điện với thay đổi nhiệt độ trời 66 Hình 12 Mối quan hệ COP với thay đổi nhiệt độ trời 67 Hình 13 Mối quan hệ áp suất ngưng tụ với thay đổi nhiệt độ trời 67 Hình 14 Mối quan hệ áp suất bay với thay đổi nhiệt độ ngồi trời 68 Hình 15 Mối quan hệ độ khô với thay đổi nhiệt độ bên ngồi 69 Hình 16 Đồ thị thể điểm nút chu trình lý thuyết thực tế 70 Hình 17 Phân tích chu trình lạnh trường hợp đồ thị P-h 71 Hình 18 Đồ thị P- h thể chu trình lý thuyết thực tế trường hợp F – AC 72 DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Từ viết tắt MNCA: Máy nén cao áp VTL1: Van tiết lưu MNTA: Máy nén thấp áp VTL2: Van tiết lưu TBNT: Thiết bị ngưng tụ TBLM: Thiết bị làm mát TBBH: Thiết bị bay COP ( Coeficient of Performance): Hệ số N – AC (Non – Air Conditioning) làm lạnh thực tế F – AC (Flash – Air Conditioning) Ký hiệu CP: Nhiệt dung riêng, [J/kgK] p: Áp suất, [Pa] F: Diện tích, [m2] Q: Nhiệt lượng, [W] m: Lưu lượng khối lượng, [kg/s] q: Nhiệt lượng đơn vị lưu H: Chiều cao, [mm] k: Hệ số truyền nhiệt, [W/m2K] T: Nhiệt độ, [K] L: Chiều dài, [mm] V: Lưu lượng thể tích, [m3/s] n: lượng , W/kgs Tổng số người phòng [người] W: Chiều rộng, [mm] d: Dung ẩm [g/kg.kk] g: Lượng ẩm [g/giờ.người] ν: Thể tích riêng [m3/kg] h: Enthalpy [kj/kg] l: Cơng nén riêng [kj/kg] P: Công suất điện [W] c: Tỷ số thể tích chết U: Điện áp cấp vào [V] x: Độ khơ I: Cường độ dịng điện [A] t: Chênh lệch nhiệt độ, [K] : Hệ số dẫn nhiệt, [W/mK] p: Độ chênh lệch áp suất, [Pa] ω: Vận tốc, [m/s] 𝛼: Hệ số tỏa nhiệt, [W/m2K] δ: Chiều dày [m] : Khối lượng riêng, [kg/m3] ε: Hệ số làm lạnh Ký tự 15.5 15.4 15.1 15.33 32.5 25.9 26.2 26.2 26.1 6.4 9.41 10.2 0.786 724.2 3.222 15.4 15.4 15.2 15.33 32.6 25.9 26.4 26.2 26.17 6.433 9.41 10.2 0.841 724.6 3.2401 14.9 14.9 14.5 14.77 32.1 25.4 25.7 25.7 25.6 6.5 9.32 10.2 0.883 722.8 3.2482 15.5 15.5 15.33 32.7 26 26.3 26.1 26.13 6.567 9.39 10.2 0.828 723.3 3.236 14.9 14.7 14.3 14.63 32.2 25.4 25.7 25.5 25.53 6.667 9.5 10.3 0.793 724.6 3.2601 14.8 14.8 14.4 14.67 32.3 25.4 25.6 25.6 25.53 6.767 9.18 10 0.841 725.9 3.2443 15 14.9 14.5 14.8 32.6 25.9 25.9 25.4 25.73 6.867 9.34 10.2 0.828 727.8 3.2557 15.6 15.6 15.4 15.53 33.4 26.2 26.6 26.5 26.43 6.967 9.54 10.4 0.869 728.6 3.2422 15.5 15.5 15.2 15.4 33.3 26.1 26.3 26.3 26.23 7.067 9.28 10.2 0.938 728.7 3.2219 15.4 15.3 15.1 15.27 33.2 25.9 26.1 26 7.2 9.28 10.2 0.876 728.8 3.1917 15.8 15.6 15.3 15.57 33.6 26 26.4 26.4 26.27 7.333 9.29 10.2 0.883 726.9 3.1901 15.9 15.9 15.5 15.77 33.9 26.4 26.5 26.5 26.47 7.433 9.41 10.2 0.828 726.3 3.1928 15.9 16.1 15.7 15.9 34.1 26.4 26.7 26.6 26.57 7.533 9.42 10.2 0.731 728.3 3.1741 15.7 15.9 34.2 26.4 26.7 26.6 26.57 7.633 9.5 10.2 0.724 728.6 3.1728 16.1 15.6 15.9 34.4 26.5 26.8 26.7 26.67 7.733 9.52 10.2 0.71 729.8 3.1972 15.6 15.87 34.5 26.5 26.8 26.7 26.67 7.833 9.4 10.2 0.766 730.4 3.2045 15.8 15.8 15.4 15.67 34.4 26.2 26.6 26.6 26.47 7.933 9.32 10.1 0.821 731.2 3.201 15.9 15.9 15.4 15.73 34.5 26.3 26.6 26.6 26.5 9.48 10.3 0.869 730.2 3.1955 15.5 15.5 15.33 34.1 25.6 26.3 26.1 26 8.1 9.46 10.3 0.841 728.5 3.1732 16 16 16 16 16 15 15 26 Chú thích: - ΔT = TB1 - TB2 : Độ chênh lệch nhiệt độ gió vào dàn lạnh gió dàn lạnh ( ℃ ) Δ P : Độ chênh lệch áp suất áp suất bay trước vào dàn lạnh sau dàn lạnh ( bar ) T1 , T2 , T3 : Nhiệt độ gió dàn lạnh đặt điểm khác dàn lạnh để hạn chế sai số (℃) T1’ , T2’ , T3’ : Nhiệt độ gió vào dàn lạnh đặt điểm khác dàn lạnh để hạn chế sai số (℃) Phụ lục 3: Bảng thông số làm việc hệ thống hoạt động trường hợp không qua tách ( N – AC) Nhiệt độ gió dàn lạnh (℃) Khơng qua tách Nhiệt độ gió vào dàn lạnh (℃) 16 15.6 15.4 15.67 30.4 26.5 26.5 26.1 26.37 4.033 25.03 Nhiệt độ gas Áp vào suất dàn bay lạnh (℃) 10.47 8.8 15.7 15.3 14.8 15.27 30.1 26.1 26.1 25.6 25.93 4.167 24.97 10.66 9.4 778.5 2.9694 15.8 15.2 15.33 30.3 26.1 26.2 25.7 26 4.3 25.03 10.59 9.5 775.9 2.9794 16.1 15.6 15.4 15.7 30.8 26.6 26.5 26.1 26.4 4.4 25.17 10.87 10 774.3 2.9948 15.6 15.9 31 26.4 26.8 26.3 26.5 4.5 25.31 10.66 9.5 773.8 2.9688 16.4 16.1 15.9 16.13 31.3 26.6 26.8 26.7 26.7 4.6 25.17 10.68 9.4 773.1 2.9621 15.5 15.3 15.1 15.3 30.4 25.7 25.7 25.7 25.7 4.7 25.03 10.76 9.7 16.1 15.9 15.4 15.8 31 26.5 26.4 25.7 26.2 4.8 25.17 10.54 9.3 772.3 2.9184 16.2 16.1 15.9 16.07 31.2 26.5 26.5 26 26.33 4.867 24.97 10.68 9.4 770.4 2.8881 15.3 14.8 14.4 14.83 30 25 25 25.1 25.03 4.967 24.83 10.54 9.2 767.9 2.8787 15.8 15.4 15.1 15.43 30.7 25.8 26 25.2 25.67 5.033 24.97 10.74 9.7 767.9 2.8881 15.3 14.8 14.6 14.9 30.2 25 25.2 25.07 5.133 25.03 10.56 9.2 767.3 2.8715 15.6 14.9 14.8 15.1 30.6 25.2 25.4 25.4 25.33 5.267 25.1 10.77 9.8 769.3 2.8828 15.2 15.3 15.17 30.5 25.3 25.4 25.2 25.3 5.2 25.03 10.72 9.6 14.3 13.7 13.5 13.83 29.3 23.9 24 23.97 5.333 24.97 10.61 9.5 767.9 2.8599 14.3 14.3 14 14.2 29.8 24.3 24.5 24.3 24.37 5.433 25.03 10.7 9.6 768.7 2.8663 14.2 14.3 14 14.17 29.9 24.4 24.5 24.3 24.4 5.5 25.1 10.66 9.7 768.5 2.8858 14.1 13.8 13.7 13.87 29.7 24.1 24.1 5.6 25.24 10.67 9.9 770.4 2.8787 15.3 15.2 14.9 15.13 31 25.3 25.5 25.2 25.33 5.667 25.38 10.92 10.3 768.3 2.8772 15.5 15.6 15.3 15.47 31.5 25.8 25.7 25.7 25.73 5.767 25.59 10.73 10.2 767.9 2.8975 16.4 16.5 16.1 16.33 32.5 26.6 26.7 26.6 26.63 5.867 25.72 10.97 10.3 769.4 2.9012 15.5 15.5 15.2 15.4 31.7 25.7 25.9 25.6 25.73 5.967 25.79 10.85 10.5 16 15.9 15.5 15.8 32.2 26.2 26.17 6.033 25.86 11.41 11.2 770.9 2.9143 T1 16.1 T2 16 T3 15 15 TB1 Nhiệt độ trời (℃) T1’ 24 26 T2’ 24 24.2 26.3 T3’ 25 TB2 Áp suất (Bar) ΔT Áp suất ngưng tụ Công suất điện (W) COP 780 2.973 772 768 768 2.9195 2.8595 2.9159 15.7 15.9 15.3 15.63 32.2 25.9 26.1 26.2 26.07 6.133 25.93 11.3 11.4 771.6 2.9304 15.2 15.2 14.9 15.1 31.7 25.3 25.6 25.5 25.47 6.233 26.07 11.22 11.1 769.5 2.9196 15.7 15.5 15.4 15.53 32.2 25.8 26 25.9 6.3 26.28 10.9 10.8 772.3 2.9091 16.2 16.1 15.9 16.07 32.9 26 26.8 26.8 26.53 6.367 26.34 10.67 10.9 774.3 2.9295 15.8 15.5 15.2 15.5 32.5 25.9 26.1 26.1 26.03 6.467 26.41 11.18 11 773.1 2.9528 15.9 15.9 15.7 15.83 32.9 26.2 26.4 26.4 26.33 6.567 26.28 11.08 10.7 772.3 2.9465 16 15.9 15.6 15.83 32.9 26.3 26.2 26.2 26.23 6.667 26.21 10.97 10.3 772.5 2.9177 15.2 15.4 15.2 32.4 25.4 25.8 25.8 25.67 6.733 26.07 11.36 10.6 15.2 15.4 15.1 15.23 32.4 25.5 25.7 25.6 6.8 26.14 10.91 10.2 775.2 2.8982 16.1 15.8 15.6 15.83 33.1 26.1 26.4 26.2 26.23 6.867 26.21 10.95 10.4 778.1 2.8967 16.1 15.7 15.6 15.8 33.2 26.2 26.4 26.2 26.27 6.933 26.28 10.9 16 15.8 15.7 15.83 33.3 26.1 26.2 26.3 7.1 26.34 10.96 15.8 15.97 33.5 26.2 26.4 26.4 26.33 7.167 26.28 10.79 15.9 15.6 15.5 15.67 33.1 25.9 26.1 26.2 26.07 7.033 26.41 10.88 10.1 783.3 2.8774 16 15.7 15.5 15.73 33.4 26.3 26.2 26.17 7.233 26.34 10.92 10.3 790.1 2.8618 15.8 15.4 15.2 15.47 33.1 25.7 25.8 25.8 25.77 7.333 26.21 10.99 10.4 789.6 16.4 16.1 15.9 16.13 33.9 26.4 26.6 26.5 7.4 26.21 11.03 10.6 791.1 2.8399 16.3 15.9 15.8 16 33.8 26.1 26.6 26.3 26.33 7.467 26.34 11.04 10.5 790.4 2.8333 16.2 15.9 15.7 15.93 33.7 26 26.4 26.1 26.17 7.533 26.48 11.02 10.6 788.7 2.8119 16.1 16 15 26 25.9 25.6 26.2 26.5 10.2 776 781 2.9231 2.9044 10.1 783.3 2.8682 9.9 787 2.8547 2.827 16.1 16 15.8 15.97 34 26 26.4 26.4 26.27 7.733 26.62 10.97 10.3 789.8 2.8263 16.3 16 15.8 16.03 33.9 26 26.4 26.4 26.27 7.633 26.55 10.9 10.2 788.3 2.8134 14.9 14.8 14.97 33.1 25.1 25.5 25.3 25.3 7.8 26.48 11.05 10.6 788.9 2.8387 15.97 34.2 26.1 26.5 26.3 26.3 7.9 26.55 11.02 10.6 790.2 15.2 16.1 16 15.8 2.834 16.3 15.9 15.8 16 34.4 26.3 26.6 26.3 26.4 26.48 11.06 10.7 791.2 2.8487 15.9 15.4 15.3 15.53 34 25.6 26.1 26 25.9 8.1 26.55 11.01 10.5 790.6 2.8417 Chú thích: - ΔT = TB1 - TB2 : Độ chênh lệch nhiệt độ gió vào dàn lạnh gió dàn lạnh ( ℃ ) T1 , T2 , T3 : Nhiệt độ gió dàn lạnh đặt điểm khác dàn lạnh để hạn chế sai số (℃) T1’ , T2’ , T3’ : Nhiệt độ gió vào dàn lạnh đặt điểm khác dàn lạnh để hạn chế sai số (℃) Phụ lục 4: Bảng thông số làm việc hệ thống hoạt động trường hợp qua tách ( F – AC) Nhiệt độ gió dàn lạnh (℃) Đi qua tách Nhiệt độ gió vào dàn lạnh (℃) 14.9 14.9 14.5 14.77 29.3 25.2 25.4 25.2 25.27 4.033 Nhiệt độ gas Áp Áp vào suất suất dàn ngưng bay lạnh tụ (℃) 23.45 10.34 8.4 15.1 15.2 14.9 15.07 29.7 25.3 25.8 25.6 25.57 4.133 23.59 10.41 8.6 701.6 3.2434 15.3 15.2 14.9 15.13 29.9 25.5 25.9 25.6 25.67 4.233 23.72 10.47 8.5 702.5 3.2495 14.6 14.87 29.7 25.1 25.7 25.2 25.33 4.367 23.79 10.29 8.2 702.9 3.2271 14.9 14.9 14.7 14.83 29.7 25.1 25.5 25.2 25.27 4.433 24 10.27 8.1 703.9 3.2123 14.9 14.8 14.7 14.8 29.8 25 25.5 25.4 25.3 4.5 24.14 10.34 8.4 705.8 3.2241 15.2 15.1 14.8 15.03 30.2 25.6 25.6 25.6 25.6 4.6 24.14 10.39 8.5 707.4 3.2372 15 30.2 25.6 25.6 25.4 25.53 4.667 24.28 10.36 8.4 707.2 3.2279 T1 15 15.2 T2 15 15 T3 14.8 TB1 Nhiệt độ trời (℃) T1’ T2’ T3’ ÁP suất (Bar) TB2 ΔT Công suất điện (W) COP 700.5 3.2485 15 14.9 14.8 14.9 30.2 25.4 25.5 25.4 25.43 4.767 24.28 10.4 8.5 708.8 3.2206 15 14.9 14.8 14.9 30.3 25.4 25.6 25.3 25.43 4.867 24.21 10.43 8.5 708.5 3.222 15.4 15.2 15.2 15.27 30.8 26 26.1 25.5 25.87 4.933 24.28 10.32 8.3 711.2 3.2301 15 14.8 14.7 14.83 30.4 25.2 25.6 25.4 25.4 24.41 10.28 8.2 709.9 3.2258 15.2 14.7 14.6 14.83 30.5 25.3 25.7 25.2 25.4 5.1 24.41 10.24 709.5 3.2276 15.3 15.1 14.9 15.1 30.9 25.7 25.9 25.5 25.7 5.2 24.55 10.31 8.2 713.2 3.221 15.5 15.5 15 15.33 31.2 25.4 26.3 25.9 25.87 5.333 24.69 10.46 8.5 713.9 3.1976 15.3 15.2 15 15.17 31.1 25.5 26 25.5 25.67 5.433 24.83 10.31 8.3 713.8 3.188 15.1 15.3 14.9 15.1 31.2 25.2 26 25.7 25.63 5.567 24.97 10.41 8.6 714.8 3.1936 15.7 15.6 15.3 15.53 31.8 26.3 26.4 25.7 26.13 5.667 25.17 10.45 8.7 718.5 3.1973 15.5 15.6 15.3 15.47 31.8 25.9 26.2 26 26.03 5.767 25.17 10.6 8.8 718.3 3.1881 15.2 15.2 14.9 15.1 31.6 25.5 26 25.7 25.73 5.867 25.03 10.27 8.4 720.5 3.1984 14.9 14.9 14.6 14.8 31.4 25.2 25.7 25.5 25.47 5.933 25.03 10.46 8.9 718.4 3.2178 14.7 14.6 14.3 14.53 31.3 25 25.6 25.3 25.3 25.17 10.35 8.4 720.6 3.2381 15.3 15.2 15.17 32 26.1 26.1 25.5 25.9 6.1 25.17 10.23 8.2 720.6 3.228 15 14.8 14.7 14.5 14.67 31.6 25 25.7 25.5 25.4 6.2 25.03 10.43 8.7 722.6 3.2191 15.1 14.9 14.5 14.83 31.9 25.5 25.8 25.5 25.6 6.3 25.17 10.3 8.3 722.3 3.2304 15.5 15.4 15.1 15.33 32.5 25.9 26.2 26.2 26.1 6.4 25.17 10.41 8.4 724.2 3.222 15.4 15.4 15.2 15.33 32.6 25.9 26.4 26.2 26.17 6.433 25.17 10.41 8.3 724.6 3.2401 14.9 14.9 14.5 14.77 32.1 25.4 25.7 25.7 25.6 6.5 25.17 10.32 8.3 722.8 3.2482 15.5 15.5 15.33 32.7 26 26.3 26.1 26.13 6.567 25.31 10.39 8.5 723.3 3.236 14.9 14.7 14.3 14.63 32.2 25.4 25.7 25.5 25.53 6.667 25.38 10.5 8.4 724.6 3.2601 14.8 14.8 14.4 14.67 32.3 25.4 25.6 25.6 25.53 6.767 25.24 10.18 8.2 725.9 3.2443 15 14.9 14.5 14.8 32.6 25.9 25.9 25.4 25.73 6.867 25.38 10.34 8.4 727.8 3.2557 15.6 15.6 15.4 15.53 33.4 26.2 26.6 26.5 26.43 6.967 25.59 10.54 8.6 728.6 3.2422 15.5 15.5 15.2 15.4 33.3 26.1 26.3 26.3 26.23 7.067 25.52 10.28 8.1 728.7 3.2219 15.4 15.3 15.1 15.27 33.2 25.9 26.1 26 7.2 25.66 10.28 8.1 728.8 3.1917 15.8 15.6 15.3 15.57 33.6 26 26.4 26.4 26.27 7.333 25.79 10.29 8.2 726.9 3.1901 15.9 15.9 15.5 15.77 33.9 26.4 26.5 26.5 26.47 7.433 25.79 10.41 8.6 726.3 3.1928 15.9 16.1 15.7 15.9 34.1 26.4 26.7 26.6 26.57 7.533 25.86 10.42 8.6 728.3 3.1741 15.7 15.9 34.2 26.4 26.7 26.6 26.57 7.633 25.93 10.5 8.8 728.6 3.1728 16.1 15.6 15.9 34.4 26.5 26.8 26.7 26.67 7.733 26.07 10.52 8.8 729.8 3.1972 15.6 15.87 34.5 26.5 26.8 26.7 26.67 7.833 26 10.4 8.4 730.4 3.2045 15.8 15.8 15.4 15.67 34.4 26.2 26.6 26.6 26.47 7.933 26.07 10.32 8.3 731.2 3.201 15.9 15.9 15.4 15.73 34.5 26.3 26.6 26.6 26.5 26.21 10.48 8.7 730.2 3.1955 15.5 15.5 15.33 34.1 25.6 26.3 26.1 26 8.1 26.07 10.46 8.8 728.5 3.1732 16 16 16 16 16 15 15 26 Chú thích: - ΔT = TB1 - TB2 : Độ chênh lệch nhiệt độ gió vào dàn lạnh gió dàn lạnh ( ℃ ) T1 , T2 , T3 : Nhiệt độ gió dàn lạnh đặt điểm khác dàn lạnh để hạn chế sai số (℃) T1’ , T2’ , T3’ : Nhiệt độ gió vào dàn lạnh đặt điểm khác dàn lạnh để hạn chế sai số (℃) Phụ lục 5: Bảng thông số làm việc hệ thống hoạt động trường hợp qua tách ( F – AC) độ khơ tách Nhiệt độ gió dàn lạnh (℃) Đi qua tách Nhiệt độ gió vào dàn lạnh (℃) 14.9 14.9 14.5 14.77 29.3 25.2 25.4 25.2 25.27 Nhiệt độ gas Áp Áp vào suất suất ΔT dàn ngưng bay lạnh tụ (℃) 4.033 23.45 10.34 8.4 15.1 15.2 14.9 15.07 29.7 25.3 25.8 25.6 25.57 4.133 23.59 10.41 8.6 0.207 3.2434 15.3 15.2 14.9 15.13 29.9 25.5 25.9 25.6 25.67 4.233 23.72 10.47 8.5 0.206 3.2495 14.6 14.87 29.7 25.1 25.7 25.2 25.33 4.367 23.79 10.29 8.2 0.21 3.2271 14.9 14.9 14.7 14.83 29.7 25.1 25.5 25.2 25.27 4.433 24 10.27 8.1 0.211 3.2123 14.9 14.8 14.7 14.8 29.8 15.2 15.1 14.8 15.03 T1 15 15.2 T2 15 15 T3 14.8 TB1 Nhiệt độ trời (℃) T1’ T2’ T3’ TB2 ÁP suất (Bar) Độ khô tách (x) COP 0.208 3.2485 25.5 25.4 25.3 4.5 24.14 10.34 8.4 0.208 3.2241 30.2 25.6 25.6 25.6 25.6 4.6 24.14 10.39 8.5 0.208 3.2372 15 30.2 25.6 25.6 25.4 25.53 4.667 24.28 10.36 8.4 0.208 3.2279 25 15 14.9 14.8 14.9 30.2 25.4 25.5 25.4 25.43 4.767 24.28 10.4 8.5 0.207 3.2206 15 14.9 14.8 14.9 30.3 25.4 25.6 25.3 25.43 4.867 24.21 10.43 8.5 0.206 15.4 15.2 15.2 15.27 30.8 25.5 25.87 4.933 24.28 10.32 8.3 0.207 3.2301 15 14.8 14.7 14.83 30.4 25.2 25.6 25.4 25.4 24.41 10.28 8.2 0.21 3.2258 15.2 14.7 14.6 14.83 30.5 25.3 25.7 25.2 25.4 5.1 24.41 10.24 0.211 3.2276 15.3 15.1 14.9 15.1 30.9 25.7 25.9 25.5 25.7 5.2 24.55 10.31 8.2 0.208 15.5 15.5 15 15.33 31.2 25.4 26.3 25.9 25.87 5.333 24.69 10.46 8.5 0.206 3.1976 15.3 15.2 15 15.17 31.1 25.5 26 25.5 25.67 5.433 24.83 10.31 8.3 0.209 15.1 15.3 14.9 15.1 31.2 25.2 26 25.7 25.63 5.567 24.97 10.41 8.6 0.207 3.1936 15.7 15.6 15.3 15.53 31.8 26.3 26.4 25.7 26.13 5.667 25.17 10.45 8.7 0.206 3.1973 15.5 15.6 15.3 15.47 31.8 25.9 26.2 26.03 5.767 25.17 10.6 8.8 0.202 3.1881 15.2 15.2 14.9 15.1 31.6 25.5 25.7 25.73 5.867 25.03 10.27 8.4 0.21 3.1984 14.9 14.9 14.6 14.8 31.4 25.2 25.7 25.5 25.47 5.933 25.03 10.46 8.9 0.206 3.2178 14.7 14.6 14.3 14.53 31.3 15.3 15.2 15.17 32 15 26 26.1 26 26 3.222 3.221 3.188 25.6 25.3 25.3 25.17 10.35 8.4 0.209 3.2381 26.1 26.1 25.5 25.9 6.1 25.17 10.23 8.2 0.211 25 3.228 25.7 25.5 25.4 6.2 25.03 10.43 8.7 0.206 3.2191 31.9 25.5 25.8 25.5 25.6 6.3 25.17 10.3 8.3 0.209 3.2304 15.33 32.5 25.9 26.2 26.2 26.1 6.4 25.17 10.41 8.4 0.207 15.4 15.2 15.33 32.6 25.9 26.4 26.2 26.17 6.433 25.17 10.41 8.3 0.206 3.2401 14.9 14.9 14.5 14.77 32.1 25.4 25.7 25.7 6.5 25.17 10.32 8.3 0.209 3.2482 15.5 15.5 15.33 32.7 14.9 14.7 14.3 14.63 14.8 14.8 14.4 15 14.8 14.7 14.5 14.67 31.6 15.1 14.9 14.5 14.83 15.5 15.4 15.1 15.4 25 25.6 3.222 26.3 26.1 26.13 6.567 25.31 10.39 8.5 0.208 32.2 25.4 25.7 25.5 25.53 6.667 25.38 10.5 8.4 0.205 3.2601 14.67 32.3 25.4 25.6 25.6 25.53 6.767 25.24 10.18 8.2 0.212 3.2443 14.9 14.5 14.8 32.6 25.9 25.9 25.4 25.73 6.867 25.38 10.34 8.4 0.209 3.2557 15.6 15.6 15.4 15.53 33.4 26.2 26.6 26.5 26.43 6.967 25.59 10.54 8.6 0.204 3.2422 15.5 15.5 15.2 15.4 33.3 26.1 26.3 26.3 26.23 7.067 25.52 10.28 8.1 0.209 3.2219 15.4 15.3 15.1 15.27 33.2 25.9 26.1 7.2 25.66 10.28 8.1 0.21 3.1917 15.8 15.6 15.3 15.57 33.6 15.9 15.9 15.5 15.77 15.9 16.1 15.7 15 26 26 26 3.236 26.4 26.4 26.27 7.333 25.79 10.29 8.2 0.21 3.1901 33.9 26.4 26.5 26.5 26.47 7.433 25.79 10.41 8.6 0.208 3.1928 15.9 34.1 26.4 26.7 26.6 26.57 7.533 25.86 10.42 8.6 0.207 3.1741 15.7 15.9 34.2 26.4 26.7 26.6 26.57 7.633 25.93 10.5 8.8 0.206 3.1728 16.1 15.6 15.9 34.4 26.5 26.8 26.7 26.67 7.733 26.07 10.52 8.8 0.205 3.1972 15.6 15.87 34.5 26.5 26.8 26.7 26.67 7.833 26 10.4 8.4 0.207 3.2045 15.8 15.8 15.4 15.67 34.4 26.2 26.6 26.6 26.47 7.933 26.07 10.32 8.3 0.209 15.9 15.9 15.4 15.73 34.5 26.3 26.6 26.6 26.5 26.21 10.48 8.7 0.206 3.1955 15.5 15.5 15.33 34.1 25.6 26.3 26.1 26 8.1 26.07 10.46 8.8 0.206 3.1732 16 16 16 16 16 15 26 3.201 Chú thích: - ΔT = TB1 - TB2 : Độ chênh lệch nhiệt độ gió vào dàn lạnh gió dàn lạnh ( ℃ ) T1 , T2 , T3 : Nhiệt độ gió dàn lạnh đặt điểm khác dàn lạnh để hạn chế sai số (℃) T1’ , T2’ , T3’ : Nhiệt độ gió vào dàn lạnh đặt điểm khác dàn lạnh để hạn chế sai số (℃) See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330489056 Experimental Study on Improving Coefficient of Performance for Split Air Conditioning System by Using an Innovative Separated– Vapor Device Conference Paper · November 2018 DOI: 10.1109/GTSD.2018.8595522 CITATIONS READS 204 authors, including: Minhhung Doan Trongtuan Nguyentran University of Technical Education Ho Chi Minh University of Technical Education Ho Chi Minh PUBLICATIONS 0 CITATIONS PUBLICATION 0 CITATIONS SEE PROFILE SEE PROFILE Thanhtrung Dang Ho Chi Minh City University of Technology and Education (HCMUTE), 39 PUBLICATIONS 312 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: CO2 Air Conditioning Systerm View project Microchannel Heat Sinks (Under Grant Numbers: NSC 99-2221-E-033-025, NSC 100-2221-E-033-065 and CYCU-98-CR-ME) View project All content following this page was uploaded by Thanhtrung Dang on 25 April 2019 The user has requested enhancement of the downloaded file November 23rd–24th, 2018 Ho Chi Minh City University of Technology and Education, Vietnam 2018 4th International Conference on Green Technology and Sustainable Development (GTSD) Optimization of Intermediate Pressure of the Two-stage Refrigeration System 370 M T Hoang, C C Vo, T V Nguyen and H K Vu Research on Heat Exchanger between Water with Air in an Intercooler Based on CFD 374 Cuong Duong Quoc, Thi Luong Dinh and Thang Dao Trong A Simple Linear Model for the Performance Evaluation of Cascade Fin Arrays 379 Hsin-I Chou, and Jau-Huai Lu Experimental Investigations for Fluid Flow Characteristics of Refrigerant R134a in a Microtubes Evaporator 385 Thanhtrung Dang, Hoangtuan Nguyen, and Giadat Nguyen Experiments on Influence of Gravity to Heat Transfer Efficiency in Micro Tube Condenser 391 Thanhtrung Dang, Kiencuong Giang, Minhhung Doan Experimental Study on Improving Coefficient of Performance for Split Air Conditioning System by Using an Innovative Separated–Vapor Device 395 MinhHung Doan, TrongTuan NguyenTran, XuanVien Nguyen and Thanhtrung Dang The Effects of Mass Flow Rate on the Performance of a Microchannel Evaporator Using CO2 Refrigerant 399 Tronghieu Nguyen and Thanhtrung Dang A Study on Change of the Shape and Size of the Minichannel Evaporators to Enhance the Cooling Capacity of the CO2 Air Conditioning Cycle 404 Kimhang Vo and Thanhtrung Dang Experimental studies on Heating and Burning of Characterized Heavy fuel Blended Oil 410 Sareddy Kullai Reddy, Chung-Hao Hsu, Yueh-Heng Li Study on Designing and Manufacturing a Radio Frequency Generator Using in Drying Technology 416 Nguyen Hay, Pham Van Kien, Le Anh Duc Determining an Effective Method for One-Sun-Dried Squid Drying 423 Le Anh Duc, Pham Van Toan Syngas Applied to Micro Thermophotovaltic Power System Assemble with Stirling Engine 427 Sheng-Wen LIU, Chien-Chun KAO, Yueh-Heng LI, and Wen Li CHEN Optimizing the Operating Parameters of the Humidification – Dehumidification Desalination System by Pinch Technology Quoc Vo Kien, Quoc Hoang An, Hiep Le Chi 431 Theoretical and Experimental Study of Intermittent Absorption Refrigeration System 436 Nghia-Hieu Nguyen, Quoc-An Hoang, Hiep-Chi Le, Hung-Duong Hoang Exergy Analysis of the Combined Ejector – Vapor Compression Refrigeration System Using R134a as Working Fluid Kien-Trung Nguyen, Quoc-An Hoang, Hiep-Chi Le 442 vi 2018 4th International Conference on Green Technology and Sustainable Development (GTSD) Experimental Study on Improving Coefficient of Performance for Split Air Conditioning System by Using an Innovative Separated–Vapor Device MinhHung Doan *, TrongTuan NguyenTran, XuanVien Nguyen and Thanhtrung Dang Abstract - This paper presented the results of improvement on Coefficient of Performance (COP) of split air–conditioner which has capacity of 9000 Btu/h This air–conditioner uses R410A as the refrigerant COP is improved by using an innovative separated–vapor device (flash chamber) in the system The system is designed to operate in two cases The first case, the saturated mixture of liquid–vapor refrigerant at low pressure passes through expansion valve (using capacity tube) and enters flash chamber The second case is that it directly enters to evaporator Both cases were experimented in the same heat load and environmental condition The procedure of investigation is implemented in the same different temperature in outdoor and indoor The results show that the power consumption reduces from 3.4 % to 4.4 % and actual coefficient of performance (COP) increase from 3.8 % to 8.7 % Besides that, pressure drop on low pressure side for two cases were also presented Experimental results were reported to show the feasibility of an innovative separated–vapor device which can be applied in air–conditioning systems two outlets While, altering the angle of cut at the top of the insert from 30 ºC to 45 ºC had little to no effect on the flow split An experimental study of vapor and liquid refrigerant separation in vertical impact T–junctions using R134a and R410A for application in but not limited to vapor compression systems was implemented [9] The results showed that liquid separation efficiency depended on the flow pattern right above the impact region The efficiency deteriorates dramatically when mist turns into churn flow regime, with increasing inlet flow rate and/or quality Keywords: split air–conditioner, heat exchanger, liquid–vapor, flash chamber, separated–vapor device II EXPERIMENTAL I INTRODUCTION One of the most important topics in this century is energy saving and environmental protection There is extensive evidence of global–warming–related phenomena and energy shortages We are facing with the increasingly serious challenges in energy security, environmental protection and greenhouse gas control Thus, many methods of energy saving are being developed Shikazono studied a series of compact vapor–liquid separators for a R410A heat pump system based on conventional round tube heat exchangers, and claimed separation is done by surface tension An efficient and compact flash gas tank used as a two–phase refrigerant separator is crucial for implementation of flash gas bypass into real air–conditioning systems [10] A Experimental set up This study was implemented on a conventional air conditioner model at Thermal–Refrigeration Workshop in HCMC University of Technology and Education The model has an outdoor and an indoor unit with specification details in the Table TABLE Refrigerant: R-410A Many previous researchers studied on many advanced cycles to improve the energy efficiency, including organic flash cycle [1], auto–cascade cycle [2], flash gas bypass cycle [3] Most of works in the past focused on investigating phase separation and improvement methods in various run type T–junctions The effect of insert within a horizontal run type T–junction on the phase split was studied [4–8] Depending on the approaching flow patterns and insert direction, inserts were seen either improve the partial phase separation or promote a more equal flow split between the *Research supported by the project No T2018– TĐ, HCMUTE MinhHung Doan is with the Department of Thermal Engineering, HCMC University of Technology and Education, HoChiMinh City 700000, Vietnam (corresponding author to provide phone: +84-908 318 456, e-mail: hungdm@hcmute.edu.vn) TrongTuan NguyenTran is with the Department of Thermal Engineering, HCMC University of Technology and Education, HoChiMinh City 700000, Vietnam (e-mail: tuanspkt147@gmail.com) XuanVien Nguyen is with the Department of Thermal Engineering, HCMC University of Technology and Education, HoChiMinh City 700000, Vietnam (e-mail: viennx@hcmute.edu.vn) ThanhTrung Dang is with the Department of Thermal Engineering, HCMC University of Technology and Education, HoChiMinh City 700000, Vietnam (e-mail: trungdang@hcmute.edu.vn) SPECIFICATIONS OF AIR–CONDITIONER Model Unit Values Cooling Capacity kW 2.65 Power Consumption W 35 Dimensions (H x W x D) mm 283 x 800 x 195 Power Consumption W 784 Maximum Current A 5.3 mm 418 x 695 x 244 Indoor Unit Outdoor Unit Dimension (H x W x D) The system was designed to operate in two cases, as shown in Fig In first case (N–AC): Liquid refrigerant is throttled by capacity tube to become a mixture vapor–liquid at low pressure after that it enters the indoor unit 395 The second case (F–AC): The mixture of vapor– liquid refrigerant after the capacity tube enters the 2018 4th International Conference on Green Technology and Sustainable Development (GTSD) flash chamber where the amount of saturated vapor will be separated and bypassed to suction line of compressor while the residual gas will come indoor unit Where m is mass flow rate of the dry air on outlet of indoor unit, m = A.ω. [kg/s] and h is different enthalpy of the air from inlet to outlet, h = hair inlet – hair outlet [kJ/kg] and enthalpy of the air on inlet–outlet dependent their temperature and humidity AC digital meter is shown in Table that is used to determine power consumption of the system; it is calculated by Eq (3) Psys = U.I.Cos (a) N–AC (3) Where U is working voltage (V), I is running current (A) and Cos is power factor B Test procedure To compare the capacity of flash chamber–split air conditioning system with conventional air conditioning system, Valves (V3, V4, V5) were installed with flash chamber as shown in Fig (b) F–AC Figure Schematic of detail systems for: a) N–AC and b) F–AC Equation (1) shows a coefficient of performance (COP) calculation to compare the performance of F–AC and N–AC COP Q indoor Psys (1) Cooling capacity is determined by experimental data and defined as following: Qindoor = m.h (2) In the first case, valve and were closed and valve was opened, the saturated mixture of liquid–vapor refrigerant at low pressure entered to indoor unit This operation is conventional air conditioner (N–AC) and the split air conditioner is being operated as this case In the second case, valve and were opened and valve was closed The mixture of vapor–liquid refrigerant after the capacity tube entered the flash chamber where the amount of saturated vapor will be separated and bypassed to suction line of compressor while the residual gas will come the indoor unit Figure Schematic of experimental facility Fig showed the position of measurement devices on the model To determine the thermodynamic properties of refrigerant, pressure and temperature sensors were assembled at four node points The ambient temperature was determined by temperature sensors which was assembled in condenser air–inlet To determine evaporator capacity, a velocity sensor was assembled in evaporator air–inlet to specify air flow Besides that, temperature and humidity detector was installed in both of air–inlet and return air to specify the different enthalpy of the evaporator air–inlet and 396 2018 4th International Conference on Green Technology and Sustainable Development (GTSD) outlet The suction fan supplied fresh air which was air– heater, was designed to maintain thermal–humidity regime for inside room was installed in outside of room at the condenser inlet and outlet III RESULTS AND DISCUSSIONS TABLE MEASUREMENT PARAMETERS AND ACCURACY Measurement Unit Range The model was independently operated in two case and were started when the temperature in the room and outdoor were equal Experimental conditions for both of them were showed in the following: Accuracy AC digital multi–function meter: Peacefair, PZEM–021 Power consumption W 0.0–4500 1.0 grade Current A 0.00–20 1% Voltage V 80–260 1% Temperature -50–70 1 Pressure Bar 0–50 1%FC Relative humidity %RH 1.0– 99.0 3% (30%-90%) Velocity m/s 0.0–45 3% 0.3 • Outdoor room temperature: from 29 ºC to 32.5 ºC • Different temperature from outdoor to indoor: from 6ºC to ºC Apparatus Accuracy C • Indoor room relative humidity: 61.9 % (min) to 65.7% (max) The experiment system was designed with two different power sources The first source was used for condenser and evaporator The second source was used for measurement devices, suction fan, and air–heater AC digital multi– function meter was installed to determine the first power source It meant that only mete the air–conditioner power consumption to determine the power consumption of the system (Psys) A Refrigerant pressure drop Fig showed the relation of refrigerant pressure drop from throttle valve outlet to compressor suction that depended on the different room temperature and ambient in both cases (N–AC and F–AC) This pressure drop included of the refrigerant pressure drop on liquid pipe from throttle valve outlet to evaporator, the boiling refrigerant pressure drop in evaporator and from evaporator to compressor suction As shown in Fig 3, the experiment model was fabricated with dimensions of 3.8 × 1.6 × 1.8 m (L×W×H) Condenser was installed in outside of room Evaporator was installed in inside of room The room was built by wood to warrant strengthening Both sides of wall surfaces of room -were assembled with PE–OPP insulation, a thickness of 10mm Exhaust air fan Figure Schematic of pressure drop Flash chamber The results presented the pressure drop of F–AC system is always lower than N–AC system This was caused by amount of refrigerant which was vaporized after throttle valve and then returned to compressor suction directly It was not through evaporator Air conditioned space Outdoor unit Experimental data also showed the different pressure in F–AC system It changed from 1.1 to 1.3 bar while the different pressure in N–AC system changed from 1.8 to 2.6 bar Figure Split Air Conditioning system for experiments This ensured heat and humidity insulation for space in room The length of refrigerant pipe from condenser to evaporator is m, the different height between condenser and evaporator is 1.7 m A suction fan supplied fresh air and 200 W heater to heat air in room to maintain thermal–humidity regime for inside room as real air–conditioning space Flash chamber device Based on catalogue, standard parameter is at 35 ºC ambient temperature and 27 ºC room temperature Thus, the different pressure drop in F–AC system is lower than N–AC system of 0.7 bar This plays important role The compression work decreases because the different pressure decreases Actually, the power consumption is reduced 397 2018 4th International Conference on Green Technology and Sustainable Development (GTSD) B Power consumption AC digital meter was used to measure the system power consumption for both condenser and evaporator The F–AC system power consumption is always lower N–AC system through PN-AC = f (t) and PF-AC = f (t) functions, as shown in Fig This meant the conventional air–conditioner with F–AC increased 7.3 % of COP at above condition IV CONCLUSION The experiment was tested on split air–conditioner with capacity of 9000 Btu/h This air–conditioner uses R410A as the refrigerant The test was implemented in two cases: F– AC and N–AC This was implemented in ambient temperature condition from 29 ºC to 32.5 ºC and the different room temperature compared with ambient from ºC to ºC The results showed several conclusions as below: System power consumption in F–AC reduced from 3.4% to 4.4% compare with N–AC F-AC always get COP higher than N–AC from 3.8% to 8.7% Refrigerant pressure drop at low pressure side (from behind throttling valve to the compressor suction) in F–AC is always lower than N–AC ACKNOWLEDGMENT Figure Schematic of power consumption The experimental results showed that the F–AC system power consumption reduced from 3.4% to 4.4% compared with N–AC system C Coefficient of Performance The real COP was determined by Eq (1) The cooling capacity was calculated by temperature, humidity and air velocity values of evaporator at the same time, the power consumption is determined as Fig The Fig showed the relation of COP following different room temperature condition The COP of F–AC system is always higher N–AC system from 3.8 % to 8.7 % The supports of this work by the project No T2018– TĐ/KHCN–GV (sponsored by the specific research fields at Hochiminh City University of Technology and Education, Vietnam) are deeply appreciated REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Figure Schematic of COP for N–AC and F–AC system In addition, the catalogue COP is 3.22 at ambient of 35 oC dry bulb and 24 ºC wet bulb temperature, the room condition is at 27 ºC dry–bulb and 19 ºC wet–bulb temperature In this experiment, when the different ambient temperature is ºC, the COP of N–AC and F–AC are 3.072, 3.295, respectively 398 View publication stats Elazhary, A., Soliman, H., 2012 Two–phase flow in a horizontal mini–size impacting T–junction with a rectangular cross–section International journal of multiphase flow 42, 104–114 Zhao, L., Zheng, N., Deng, N., 2014 A thermodynamic analysis of an auto–cascade heat pump cycle for heating application in cold regions Energy and Buildings 82, 621–631 Tuo, H and Hrnjak, P , 2012 Flash gas bypass in mobile air conditioning system with R134a International Journal of Refrigeration 35, 1869–1877 Wren, E., Azzopardi, B., 2004 Affecting the phase split at a large diameter T–junction by using baffles Experimental Thermal and Fluid Science 8, 835–841 Milosevic, A., Hrnjak, P.S., 2010 Flash Gas Bypass Concept Utilizing Low Pressure Refrigerants ACRC Report TR–283 University of Illinois, Urbana, USA Mak, C.Y., Omebere–Iyari, N.K., Azzopardi, B.J., 2006 The split of vertical two–phase flow at a small diameter T–junction Chem Eng Sci 61 (19), 6261–6272 Mohamed, M.A., Soliman, H.M., Sims, G.E., 2012 Conditions for complete phase separation in an impacting tee junction at various inclinations of the outlet arms Int J Mmultiphas Flow 47 (0), 66–72 Mohamed, M.A., Soliman, H.M., Sims, G.E., 2011 Experimental investigation of two–phase flow splitting in an equal–sided impacting tee junction with inclined outlets Exp Therm Fluid Sci 35 (6), 1193–1201 Tuo, H and Hrnjak, P , 2014 Vapor–liquid separation in a vertical impact T–junction for vapor compression systems with flash gas bypass International Journal of Refrigeration 40, 189–200 Shikazono, N., 2010 Development of compact gas–liquid separator using surface tension In: Int Symposium on Next–generation Air Conditioning and Refrigeration Technology, Tokyo, Japan ... viên chọn đề tài ? ?Nghiên cứu nâng cao hệ số làm lạnh hệ thống điều hịa khơng khí cách sử dụng tách hơi? ?? để nghiên cứu tập trung vào đối tượng máy điều hịa khơng khí dân dụng sử dụng phổ biến thị... thấy, tình hình nghiên cứu nước chưa có tác giả nghiên cứu ứng dụng tách vào hệ thống điều hịa khơng khí dân dụng Đa số nhà nghiên cứu nước lĩnh vực điều hòa khơng khí nghiên cứu sử dụng mơi chất... thiện hệ số làm lạnh (COP) máy điều hòa khơng khí hai khối có cơng suất 9000 Btu/h Máy điều hịa khơng khí sử dụng R410A làm mơi chất lạnh COP cải thiện cách sử dụng thiết bị tách để cải tiến hệ thống