Nguyln Thj Vi?t Hirong va Dig Tap chi KHOA HQC & CONG NGHE 128(14) 35 - 41 DIEU KHIEN CAU TREO 3D CHAT LU^ONG CAO SU" DUNG BO DIEU K H I E N THICH NGHI BEN VtTNG Nguyen Thj Viet H u o n g ' , Nguyen Doan Phuoc^, Vu Thi Thiiy N g a \ Do T r u n g Hai^' Trudng Cao ddng Cong nghiep Thai \giiyen 'Trudng Dai hoc Bach khoa Ha \'6i, ^Tru&ng Dgi hoc Ky Ihugl Cong nghiep - DH Thai Nguyen TOMTAT Bai bao trinh bay mot phuong phap dieu khien cho he thong cau treo thong qua bo dieu khien thich nghi ben vftng Bing each sir dung bp dieu khien khong nhitng dam bao dupe su bam quy dao cho cac chuyen dong ciia cau treo ma dam bao goc lac ciia day cap theo cac phuong tign dan v^ khong Khong nhung th6, bp di^u khien dg xuat bai bao dam bao rSng he thong van cho dap irng tot co anh hudng ciia nhieu ben ngoai va c6 tham so bat djnh mo hinh, Hieu qua cua bo dieu khien dupe chirng minh thong qua cac ket qua mo phong thirc hien tren Matlab/Simulink Til" kh6a: Cau treo: Cau gian; ho dieu khien thich nghi: Phuang trinh Euler-Lagrange He thieu ca cau chap hanh DAT VAN DE Mac dii da xuat hien tir kha lau va dugc diing rat nhieu cdng nghiep [4], song van de dieu khien can cau treo, cai lien chat lugng van chuyen, bdc dd hang, djnh hudng nhanh, an toan va chinh xac, tiet kiem nang lugng, van la bai loan thdi sir [3] tac gia da de xuat mgt chien luge dieu khien phan hdi trang thai de nhac, dn dinh, va phan phdi phu tai Hai bd dieu khien dpc lap dugc sir dung: mgt (thuc hien thay ddi he sd khuech dai vdi sir thay ddi chieu dai cap) de dieu khien vj tri xe tdi va su dao dgng phu lai va bg de dieu khien vj tri nang phu tai Thuat toan duge kiem tra tren mgt md hinh thu nho da chii'ng minh su bam tdt ciia vj tri can true va chieu dai cap, khdng ed cae dao dgng du, va lam giam tot cac nhieu ben ngoai ddi vdi vj tri ciia xe tdi va gdc dao ddng phu tai Tuy nhien van tdn tai nhii'ng dao ddng tire thdi vdi gdc la 12" Trong [1] cac tac gia da su dung cac mang na ron de nang cao hieu suat ciia mgt bp dieu khien phan hoi trang thai dong thai hieu chinh hieu suat true tuyen theo sir thay ddi ciia chieu dai cap Ky thuat md cung dugc cac tac gia sir dung de thiet k8 bg dieu khien md dieu khien vi tri eiia xe tdi va gdc dao Email dolriinghaK^lnut edu Vi ddng de loai bo cac dao dgng du, Tuy nhien cac thi nghiem kiem tra da chi rang bd dieu khien md va no ron lam cho xe tdi di chuyen tdi diem muc tieu mgt each tron tru khdng cd dao ddng du; nhien, co the thay rang nd dat tdi diem muc lieu rat cham Trong bai bao nay, mgt bg dieu khien thich nghi ben viing dugc de xuat de dieu khien cho he thdng cau treo 3D Bang each sir dung bd dieu khien khdng nhirng dam bao dupe su bam quy dao cho eac chuyen ddng cua cau treo ma cdn dam bao gdc lac cua day cap theo cae phuang lien dan ve khdng Khdng nhirng the, bd dieu khien de xuat bai bao cdn dam bao rang he thong van cho dap ung tdt cd anh hudng ciia nhieu ben ngoai va ea ed sir bai dinh tham sd mo hinh Hieu qua ciia bd dieu khien dupe chung minh thdng qua cac ket qua md phdng thuc hien tren Matlab/Simulink MO HJNH CAU TREO 3D Xet he cau treo 3D hai dau vao cd dang cau gian, tuc la xe cau vdi khdi lugng m, se di chuyen theo ca hai chieu j va y true giao mat phang nam ngang Su' di chuyen duge tao bdi lire day U|(/) theo phuang X va ^2(0 theo phuang y dgc lap 35 Nguyen Thi Viet Hirong vd Dtg 128(14)-35-41 Tap chi KHOA HOC & CONG NGHE vdi (hinh I) Hai luc day chinh la hai tin hieu dau vao cua he D6 dem gian, trudc tien ta gia thiet qua trinh cdu hang, chieu dai I ctia day treo hang la hiing sd Ndi each khac, he chi cd hai tin hieu vao nhat la w, va u , Xe cau di chuygn theo phuang x tren mpt xa dd ed khoi lugng m, Nhu vay, toan bg khdi lugng dugc djch chuyen dgc theo true y se bao gdm m, ciia xe cau, m, ciia xa dd va m,^ ciia hang dugc van chuyen Md hinh Euler- Lagrange ciia he cd dang nhu sau: M{q)ii + Ciq,q)q + g{q) = T Hinh L Cdu treo chuyen dong theo phuang eo z2prii^c ^ truecgi dd: ^ 771 _ + 771 1^ M(g) - m iJ, cos, cos (p m , + m ,^ + 7n ^ m 1^/ CO s COS ip rn ,^l cos - m , , ; s n ^ s in p m ,, / s i n ^ c s p B s\n m, ,J cos (p B s\x\ (p m ,^l' + J - ' m j , / s i n B s i n m jj s\r\ cos (p m,, / ' s i n " ^ - f j C{q,q) = 'o 0 0 0 -m je -m je sin B c o s ^ - 771,1 J ^ c o s ^ s i n p s i n B s i n ^ + m ,^l(p cos m ij.~(p s i n cos -m JO m JB cos 6 s i n p - m J^ C0 B cos -m sin d cos^ ip - m ,J.