1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

ly thuyet mach 1168

7 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 298,34 KB

Nội dung

_Chương Những khái niệm - – CHƯƠNG I NHỮNG KHÁI NIỆM CƠ BẢN – DẠNG SĨNG CỦA TÍN HIỆU √ Hàm mũ √ Hàm nấc đơn vị √ Hàm dốc √ Hàm xung lực √ Hàm sin √ Hàm tuần hoàn – PHẦN TỬ MẠCH ĐIỆN √ Phần tử thụ động √ Phần tử tác động – MẠCH ĐIỆN √ Mạch tuyến tính √ Mạch bất biến theo thời gian √ Mạch thuận nghịch √ Mạch tập trung – MẠCH TƯƠNG ĐƯƠNG √ Cuộn dây √ Tụ điện √ Nguồn độc lập Lý thuyết mạch môn học sở chuyên ngành Điện tử-Viễn thông-Tự động hóa Khơng giống Lý thuyết trường - mơn học nghiên cứu phần tử mạch điện tụ điện, cuộn dây để giải thích vận chuyển bên chúng - Lý thuyết mạch quan tâm đến hiệu phần tử nối lại với để tạo thành mạch điện (hệ thống) Chương nhắc lại số khái niệm mơn học 1.1 DẠNG SĨNG CỦA TÍN HIỆU Tín hiệu biến đổi hay nhiều thơng số q trình vật lý theo qui luật tin tức Trong phạm vi hẹp mạch điện, tín hiệu hiệu dịng điện Tín hiệu có trị khơng đổi, ví dụ hiệu pin, accu; có trị số thay đổi theo thời gian, ví dụ dịng điện đặc trưng cho âm thanh, hình ảnh Tín hiệu cho vào mạch gọi tín hiệu vào hay kích thích tín hiệu nhận ngã mạch tín hiệu hay đáp ứng Người ta dùng hàm theo thời gian để mơ tả tín hiệu đường biểu diễn chúng hệ trục biên độ - thời gian gọi dạng sóng Dưới số hàm dạng sóng số tín hiệu phổ biến _ Nguyễn Trung Lập THUYẾT MẠCH LÝ _Chương Những khái niệm - 1.1.1 Hàm mũ (Exponential function) v(t ) = Keσt K , σ số thực (H 1.1) dạng sóng hàm mũ với trị σ khác (H 1.1) 1.1.2 Hàm nấc đơn vị (Unit Step function) ⎧1 , t ≥ a u(t - a) = ⎨ ⎩0 , t < a Đây tín hiệu có giá trị thay đổi đột ngột từ lên thời điểm t = a (H 1.2) số trường hợp khác hàm nấc đơn vị (a) (b) (c) (H 1.2) Hàm nấc u(t-a) nhân với hệ số K cho Ku(t-a), có giá tri K t ≥ a 1.1.3 Hàm dốc (Ramp function) Cho tín hiệu nấc đơn vị qua mạch tích phân ta ngã tín hiệu dốc đơn vị t r(t) = ∫ u(x)dx −∞ Nếu ta xét thời điểm t=0 mạch khơng tích trữ lượng trước thì: t 0 −∞ r(t) = ∫ u(x)dx + u(0) với u(0) = ∫ u(x)dx = Dựa vào kết ta có định nghĩa hàm dốc đơn vị sau: ⎧t , t ≥ a r(t - a) = ⎨ ⎩0 , t < a (H 1.3) dạng sóng r(t) r(t-a) _ Nguyễn Trung Lập THUYẾT MẠCH LÝ _Chương Những khái niệm - (a) (H 1.3) (b) Hàm dốc r(t-a) nhân với hệ số K cho hàm Kr(t-a), dạng sóng đường thẳng có độ dốc K gặp trục t a 1.1.4 Hàm xung lực (Impulse function) Cho tín hiệu nấc đơn vị qua mạch vi phân ta tín hiệu xung lực đơn vị du(t) δ( t ) = dt (δ(t) gọi hàm Delta Dirac) Ta thấy δ(t) hàm số theo nghĩa chặt chẽ tốn học đạo hàm hàm nấc có trị = t ≠ không xác định t = Nhưng hàm quan trọng lý thuyết mạch ta hình dung xung lực đơn vị hình thành sau: Xét hàm f1(t) có dạng (H 1.4a): ⎧1 ⎪ r (t ) , f1 (t ) = ⎨ δ ⎪⎩1 , t ∈ {0,δ} t >δ (a) (b) (c) (d) (H 1.4) Hàm f0(t) xác định bởi: df (t) f0 (t) = dt (0≤ t ≤δ) = t > δ (H 1.4b) δ Với trị khác δ ta có trị khác f0(t) phần diện tích giới hạn f0(t) trục hồnh ln ln =1 (H 1.4c) Khi δ→0, f1(t) → u(t) f0(t) → δ(t) Vậy xung lực đơn vị xem tín hiệu có bề cao cực lớn bề rộng cực nhỏ diện tích đơn vị (H 1.4d) Tổng quát, xung lực đơn vị t=a, δ(t-a) xác định bởi: t ⎧1 , t ≥ a ∫− ∞ δ(t)dt = ⎨⎩ , t < a Các hàm nấc, dốc, xung lực gọi chung hàm bất thường f0(t) độ dốc f1(t) = _ Nguyễn Trung Lập THUYẾT MẠCH LÝ _Chương Những khái niệm - 1.1.5 Hàm sin Hàm sin hàm quen thuộc nên giới thiệu vài hàm có quan hệ với hàm sin – Hàm sin tắt dần: v(t)=Ae-σtsinωt, t>0 A số thực dương (H 1.5a) – Tích hai hàm sin có tần số khác v(t)=Asinω1t.sinω2t (H 1.5b) (a) (H 1.5) (b) 1.1.6 Hàm tuần hồn khơng sin Ngồi tín hiệu kể trên, thường gặp số tín hiệu như: cưa, hình vng, chuỗi xung gọi tín hiệu khơng sin, tuần hồn hay khơng Các tín hiệu diễn tả tổ hợp tuyến tính hàm sin, hàm mũ hàm bất thường (H 1.6) mơ tả số hàm tuần hồn quen thuộc (H 1.6) 1.2 PHẦN TỬ MẠCH ĐIỆN Sự liên hệ tín hiệu tín hiệu vào mạch điện tùy thuộc vào chất độ lớn phần tử cấu thành mạch điện cách nối với chúng Người ta phân phần tử làm hai loại: – Phần tử thụ động: phần tử nhận lượng mạch Nó tiêu tán lượng (dưới dạng nhiệt) hay tích trữ lượng (dưới dạng điện từ trường) Gọi v(t) hiệu hai đầu phần tử i(t) dòng điện chạy qua phần tử Năng lượng đoạn mạch chứa phần tử xác định bởi: t W(t) = ∫ v(t).i (t)dt −∞ - Phần tử thụ động W(t) ≥ 0, nghĩa dòng điện vào phần tử theo chiều giảm điện _ Nguyễn Trung Lập THUYẾT MẠCH LÝ _Chương Những khái niệm - Điện trở, cuộn dây tụ điện phần tử thụ động – Phần tử tác động: phần tử cấp lượng cho mạch Năng lượng đoạn mạch chứa phần tử W(t) 10.4 Mạch (H P10.4) Xác định vo(t) Cho vo(0)=4V i(0)=3A Cho (H P10.3) (H P10.4) 10.5 Mạch (H P10.5) Xác định io(t) 10.6 Mạch (H P10.6) Dùng định lý kết hợp xác định vo(t) (H P10.5) (H P10.6) 10.7 Mạch (H P10.7) đạt trạng thái thường trực t=0- với khóa K vị trí Chuyển K sang vị trí 2, thời điểm t=0 Xác định i t>0 (H P10.7) 10.8 Mạch (H P10.8) đạt trạng thái thường trực t=0 Xác định v t>0 (H P10.8) 10.9 Mạch (H P10.9) đạt trạng thái thường trực t=0- Xác định i t>0 _ Nguyễn Trung Lập MẠCH LÝ THUYẾT _Chương 10 Phép biến đổi Laplace - 21 (H P10.9) 10.10 Mạch (H P10.10) Xác định i(t) t>0 Cho v(0) = V i(0) = A (H P10.10) _ Nguyễn Trung Lập MẠCH LÝ THUYẾT

Ngày đăng: 02/12/2022, 22:49