Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 26 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
26
Dung lượng
2,64 MB
Nội dung
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT ĐÔNG SƠN SÁNG KIẾN KINH NGHIỆM TÊN ĐỀ TÀI SỬ DỤNG PHƯƠNG PHÁP VẼ THÊM ĐƯỜNG PHỤ GIÚP HỌC SINH LỚP 12 GIẢI MỘT SỐ BÀI TẬP LIÊN QUAN ĐẾN ĐỒ THỊ HÀM SỐ Người thực hiện: Nguyễn Thị Hà Chức vụ: Giáo viên SKKN thuộc lĩnh mực (môn): Tốn THANH HỐ, NĂM 2021 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com MỤC LỤC Trang Phần mở đầu 1.1 Lý chọn đề tài…………………………………… 1.2 Mục đích nghiên cứu 1.3 Đối tượng nghiên cứu 1.4.Phương pháp nghiên cứu 2 Nội dung 2.1 Cơ sở lí luận skkn 2.2.Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.3 Các giải pháp sử dụng để giải vấn đề 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường………………………… 16 Kết luận, kiến nghị 17 3.1 Kết luận 17 3.2 Kiến nghị 17 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Phần mở đầu 1.1 Lý chọn đề tài Theo Nghị Số 29-NQ/TW “Về đổi bản, toàn diện giáo dục đào tạo, đáp ứng u cầu cơng nghiệp hóa, đại hóa điều kiện kinh tế thị trường’’ Bộ GD&ĐT Kể từ năm học 2016 – 2017 học sinh thi theo hình thức trắc nghiệm gồm 50 câu thời gian 90 phút Vì học sinh cần tư nhanh chóng liên hệ kiến thức để hồn thiện làm Mơn tốn học THPT mơn học với lượng lý thuyết tập tương đối nhiều, thời lượng học lớp có hạn Vì vậy, việc hướng dẫn cho học sinh kỹ phương pháp giải tập vô cần thiết Năm học 2017-2018 nghiên cứu dạng tập liên quan đến đồ thị hàm số sáng kiến kinh nghiệm tơi Hội đồng khoa học ngành xếp loại C Năm học 2018-2019 nghiên cứu dạng tập liên quan đến đồ thị hàm số sáng kiến kinh nghiệm tơi lại Hội đồng khoa học ngành xếp loại C Năm học 2019-2020 nghiên cứa dạng tập liên quan đến đồ thị hai hàm số , , hay đồ thị ba hàm số , , sáng kiến kinh ngiệm Hội đồng khoa học ngành xếp loại C Vẫn mạch kiến thức đồ thị nghiên cứu sang dạng tập mà từ đồ thị cho ta vẽ thêm đường thẳng y=ax+b hay y=ax2+bx+c để tìm điều kiện tham số để bất phương trình có nghiệm, tìm khoảng đồng biến, nghịch biến, cực trị hay tìm giá trị lớn nhất, nhỏ hàm số , vv phần tập vận dụng có tính liên hệ cao lý thuyết lẫn thực hành, dạng tập đa dạng phức tạp xuất đề thi THPT quốc gia đề thi mẫu từ năm 2017 đến nay, khả phân tích xử lý dạng tập học sinh cịn yếu Trước thực trạng tơi tiếp tục chọn đề tài “Sử dụng phương pháp vẽ thêm đường phụ giúp học sinh lớp 12 giải số tập liên quan đến đồ thị hàm số” 1.2 Mục đích nghiên cứu Giúp học sinh nắm vững lí thuyết xây dựng cách giải tập liên quan đến đồ thị hàm số Rèn luyện kĩ nhận dạng, phân tích, xử lý, trả lời tập trắc nghiệm phần đồ thị hàm số Giúp đồng nghiệp nâng cao chất lượng dạy học môn toán học THPT, đặc biệt phần đồ thị hàm số 1.3 Đối tượng nghiên cứu - Kiến thức: + Lý thuyết phần đạo hàm, khoảng đồng biến, nghịch biến, cực trị, giá trị lớn nhất, nhỏ đồ thị hàm số (chương I- Giải tích 12) +Kĩ đọc đồ thị hàm số (chương II- Đại số 10) UAN VAN CHAT LUONG download : add luanvanchat@agmail.com - Học sinh lớp 12A2, 12A3 trường THPT Đông Sơn năm học 2020 -2021 1.4 Phương pháp nghiên cứu Phương pháp nghiên cứu lí thuyết: Nghiên cứu tài liệu lí thuyết sách tham khảo tài liệu mạng từ phân tích tổng hợp kiến thức phân loại hệ thống hoá kiến thức Phương pháp điều tra: Khảo sát học sinh lớp 12 để nắm khả tư lĩnh hội kiến thức học sinh kĩ giải tập có liên quan đến đồ hàm số Phương pháp thực nghiệm khoa học: Chủ động tác động lên học sinh để hướng phát triển theo mục tiêu dự kiến Phương pháp phân tích tổng kết kinh nghiệm: Nghiên cứu xem xét lại thành thực tiễn khứ để rút kết luận bổ ích cho thực tiễn Phương pháp thống kê xử lí số liệu: Sử dụng xác suất thống kê để xử lí số liệu thu thập Nội dung 2.1 Cơ sở lí luận SKKN * Từ đồ thị sẵn có hàm số ta làm được: + Vẽ thêm đồ thị hàm số , , + Xét tính tương giao với đường thẳng , hay với parabol * Đồ thị hàm cắt trục hồnh điểm điểm cực trị hàm * Công thức tính đạo hàm hàm hợp * Diện tích hình phẳng giới hạn đồ thị hàm đường thẳng 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm Sau nhiều năm giảng dạy học sinh lớp 12 nhận rằng: Phần lớn học sinh khả phân tích nhận dạng tập vận dụng có liên quan đến đồ thị hàm số tương đối yếu Rất nhiều học sinh lúng túng giải tập có liên quan đến đồ thị hàm số đề thi THPT Quốc gia, đề thi mẫu từ năm 2017 đến nay, đề thi thử TNTHPT trường, 2.3 Các giải pháp sử dụng sử dụng để giải vấn đề Để giúp học sinh hình thành kỹ giải tập có liên quan đến đồ thị hàm số tơi nghiên cứu hình thành SKKN theo bước sau: Đầu tiên tơi nghiên cứu tài liệu lí thuyết sách tham khảo tài liệu mạng từ phân tích tổng hợp kiến thức phân loại hệ thống tập có liên quan đến đồ thị hàm số UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Sau tơi tiến hành khảo sát học sinh lớp 12 để nắm khả tư lĩnh hội kiến thức học sinh kĩ giải tập có liên quan đến đồ thị hàm số * Dạng 1: Từ đồ thị hàm số tìm khoảng đơn điệu hay cực trị hàm số - Phương pháp: + Bước 1: Tính đạo hàm + Bước 2: Từ dồ thị cho ta vẽ thêm đường phụ + Bước 3: Dựa vào đồ thị tìm nghiệm y’, xét dấu y’ Từ ta tìm khoảng đồng biến, nghịch biến, cực trị hàm số - Ví dụ minh họa Ví dụ 1: Cho hàm số Đồ thị hàm số bên Hỏi đồ thị hàm số nhiêu điểm cực trị? A C hình có bao Cách giải: Đặt Từ đồ thị hàm số ta vẽ thêm đường thẳng O Ví dụ 2: Cho hàm số hàm số bên Hàm số biến khoảng A C y có đạo hàm O UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Cách giải: Ta có Từ đồ thị hàm số đường thẳng ta vẽ thêm (như hình vẽ bên ) Dựa vào hình vẽ ta thấy đường thẳng điểm có hồnh độ ngun liên tiếp cắt đồ thị hai từ đồ thị ta thấy miền nên miền Vậy hàm số nghịch biến khoảng Chọn đáp án C INCLUDEPICTURE Ví dụ Cho hàm số với đạo hàm có "https://scontent.fsgn2đồ thị hình vẽ Hàm số 1.fna.fbcdn.net/v/t34.0đạt cực đại 12/25436373_147132562964 6698_1258573945_n.jpg? điểm nào? oh=5f38a61c7797d376ac6f3a A B f13e255fe2&oe=5A384243" \ * MERGEFORMATINET C D INCLUDEPICTURE "https://scontent.fsgn21.fna.fbcdn.net/v/t34.012/25436373_147132562964 6698_1258573945_n.jpg? oh=5f38a61c7797d376ac6f3a f13e255fe2&oe=5A384243" \ * MERGEFORMATINET INCLUDEPICTURE "https://scontent.fsgn21.fna.fbcdn.net/v/t34.012/25436373_147132562964 6698_1258573945_n.jpg? oh=5f38a61c7797d376ac6f3a f13e255fe2&oe=5A384243" \ * MERGEFORMATINET UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Cách giải: Ta có Điểm cực trị hàm số nghiệm phương trình hàm số điểm 64e8e&oe=5A3995B0" Từ đồ thị cho ta vẽ thêm đồ thị hàm số INCLUDEPICTURE "https://scontent.fsgn21.fna.fbcdn.net/v/t34.012/25463789_1472254826220445_ 126390102_n.jpg? oh=b2db3b45e5a08f238fbe88c6754 (như hình vẽ bên) \* MERGEFORMATINET INCLUDEPICTURE "https://scontent.fsgn21.fna.fbcdn.net/v/t34.012/25463789_1472254826220445_ 126390102_n.jpg? oh=b2db3b45e5a08f238fbe88c6754 64e8e&oe=5A3995B0" \* MERGEFORMATINET INCLUDEPICTURE "https://scontent.fsgn21.fna.fbcdn.net/v/t34.012/25463789_1472254826220445_ 126390102_n.jpg? oh=b2db3b45e5a08f238fbe88c6754 64e8e&oe=5A3995B0" \* MERGEFORMATINET UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Dựa vào đồ thị ta có BBT hàm số sau: Dựa vào BBT ta thấy hàm số D Ví dụ 3: Cho hàm số số hình bên Mệnh đề đúng? A.Hàm số B.Hàm số C.Hàm số D.Hàm số Cách giải: Ta có Từ đồ thị ta suy khoảng nằm đường Ví dụ 5: Cho hàm số có bảng xét dấu đạo hàm sau UAN VAN CHAT LUONG download : add luanvanchat@agmail.com * Dạng 2: Từ đồ thị hàm số cho tìm số nghiệm phương trình hay tìm tham số m để phương trình thỏa mãn điều kiện cho trước - Phương pháp: + Bước 1: Tính đạo hàm (nếu cần) + Bước 2: Từ đồ thị cho ta vẽ thêm đường phụ y=a hay + Bước 3: Từ đồ thị vừa vẽ biện luận số nghiệm phương trình , hay xác định số nghiệm phương trình - Các ví dụ minh họa Ví dụ 1: Cho hàm số bậc ba có đồ thị hình vẽ bên Số nghiệm thực phương trình A.6 B.10 C.12 D.3 Cách giải: Ta có Từ đồ thị cho ta vẽ thêm đường thẳng y =1/2 y = -1/2 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Xét hàm số Ta có Bảng biến thiên Dựa vào bảng biến thiên ta có Phương trình: có nghiệm, phương trình: Mỗi phương trình có nghiệm có , nghiệm Từ suy phương trình có 10 nghiệm Chọn đáp án B Ví dụ 2: Cho hàm số liên tục có đồ thị đường cong trơn (khơng bị gãy khúc), hình vẽ bên Gọi hàm Hỏi phương trình nghiệm phân biệt? A C có Cách giải: Ta có: Từ đồ thị thấy: (1) có nghiệm nghiệm 10 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Xét phương trình (2) ta có: có nghiệm phân biệt (hai nghiệm trùng với (1)) Từ đồ thị cho ta vẽ thêm đường thẳng ta thấy: có nghiệm tương ứng hồnh độ điểm có nghiệm ứng với hồnh độ điểm Z có nghiệm tương ứng hoành độ điểm Từ đồ thị thấy điểm nghiệm hồn tồn phân biệt nên phương trình có tổng cộng nghiệm phân biệt Ví dụ 3: Cho hàm số thị hàm số Mệnh đề sau đúng? A Phương trình thuộc đoạn có hai nghiệm B Phương trình đoạn C Phương trình thuộc đoạn D Phương thuộc đoạn Cách giải: Ta có Từ đồ thị hàm số hàm số ta vẽ thêm đồ thị (như hình vẽ bên), từ hình vẽ 11 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com ta có: Xét hình phẳng giới hạn đồ thị có diện tích Xét hình phẳng giới hạn đồ thị có diện tích Dựa vào đồ thị ta có bảng biến thiên hàm Từ bảng biến thiên suy phương trình thuộc đoạn có nghiệm Chọn đáp án C Ví dụ 4: Cho hàm số hình Hàm số vẽ bên A C Cách giải: Đặt 12 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Bất phương trình trở thành Đặt với Bất phương trình với khi Ta có , Nghiệm phương trình khoảng hồnh độ giao điểm đồ thị đường thẳng với Từ đồ thị cho ta vẽ thêm đồ thị hàm số đồ thị ta nghiệm (như hình vẽ bên) Dựa vào Cũng dựa vào đồ thị ta thấy Bảng biến thiên: , Dựa vào bảng biến thiên ta thấy Vậy bất phương trình cho với Chọn đáp án B Ví dụ 5: Cho hàm số hình có đồ thị Xét hàm vẽ với tham số thực Điều kiện cần đủ để A B số , 13 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com C D Cách giải: Ta có ; Từ đồ thị cho ta vẽ thêm đồ thị hàm số Từ hình vẽ ta Ta thấy hàm số , nên đồng biến Do đó, để , Chọn đáp án A * Dạng 3: Từ đồ thị hàm số cho tìm giá trị nhỏ , lớn hàm số Phương pháp: + Bước 1: Tính đạo hàm + Bước 2: Từ đồ thị cho ta vẽ thêm đường phụ + Bước 3: Từ đồ thị vừa vẽ ta tìm giá trị nhỏ , lớn hàm số Các ví dụ minh họa: Ví dụ 1: Cho hàm số hàm số Biết có đồ thị hình Trên hàm số đạt giá trị nhỏ điểm nào? A B C D Cách giải: Xét hàm số 14 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Ta có: Trên đồ thị hàm số thêm đường thẳng Từ đồ thị ta vẽ ta thấy Bảng biến thiên hàm số sau: Vậy Chọn đáp án A Ví dụ 2: (Sở GD Thanh Hóa - 2019) Cho hàm số liên tục có đồ thị hàm số hình vẽ bên Xét hàm số Khi khẳng định sau đúng? A C B D Cách giải: 15 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Ta có: Vẽ đường thẳng y = x + thêm vào hình vẽ ta hình bên Nhận thấy hai đồ thị cắt điểm ; +) Trên khoảng đồng biến +) Trên khoảng , thấy và , thấy nghịch biến Như vậy, ta lập bảng biển thiên sau: Từ bảng biến thiên trên, Chọn đáp án C liên tục cho hình Ví dụ 3: Cho hàm số có đồ thị Đặt Mệnh đề A.Không tồn B C Cách giải: Ta có D Từ đồ thị cho ta vẽ thêm đồ thị hàm số Quan sát đồ thị bên ta có hoành độ giao điểm khoảng 16 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Vậy ta so sánh giá trị Xét Tương tự xét Xét Vậy Ví dụ 4: Cho hàm số tục Biết đồ thị hàm số hình vẽ bên Lập Mệnh đề sau đúng? A C Cách giải: đoạn Từ đồ thị cho ta vẽ thêm đồ thị hàm số y = 2x +1 (như hình vẽ bên dưới) Dựa vào hình vẽ ta có diện tích hình phẳng giới hạn Vì nên 17 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Diện tích hình phẳng giới hạn Vì nên Chọn đáp án A Ví dụ : Cho ham sơ Biết hàm số có đồ thị hình bên Trên đoạn , hàm số giá trị nhỏ điểm A C đạt B D Cách giải: Ta có: Từ đồ thị cho ta vẽ thêm đồ thị hàm số Dựa vào hình vẽ bên ta có: Và ta có bảng biến thiên Suy hàm số Ví dụ 6: Cho hàm số hình vẽ Xét hàm số đạt giá trị nhỏ điểm Chọn đáp án C có đồ thị Mệnh đề đúng? 18 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com A B C D Cách giải: Ta có: Căn vào đồ thị Ngồi ra, vẽ đồ thị , ta có: hàm số hệ trục tọa độ hình vẽ bên , ta thấy qua điểm , Rõ ràng , + Trên khoảng + Trên khoảng với đỉnh thì , nên , nên Từ nhận định trên, ta có bảng biến thiên hàm sau: Vậy Chọn đáp án C 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường Trong trình giảng dạy, thử nghiệm với hai lớp: 12A2, 12A3 Kết kiểm tra phần tập vẽ thêm đồ thị hàm sốnhư sau: Trước tiến hành thử nghiệm: Lớp 12 A2 12 A3 19 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Sau thử nghiệm: Sau thời gian áp dụng đề tài giảng dạy thấy: số lượng học sinh giải dạng tập tăng lên, chưa nhiều số học sinh có tư dạng tập tăng lên (có thể em chưa giải đúng) điều quan trọng giúp em thấy bớt khó khăn việc học tập mơn tốn, tạo niềm vui hưng phấn bước vào tiết dạy Kết luận, kiến nghị 3.1 Kết luận + Để áp dụng có hiệu đề tài việc cần làm phải giúp em nắm vững lí thuyết chương Đại số 10 chương sách giáo khoa Giải tích 12 Sau tơi hướng dẫn em: - Xác định rõ bước làm dạng tập - Xây dựng hệ thống công thức tổng quát, nhận dạng nhanh dạng tập + Căn vào mục tiêu học xây dựng giáo án chi tiết cho nội dung kiến thức + Vận dụng linh hoạt hệ thống phương pháp giảng dạy Chú trọng việc tạo tình có vấn đề cách giải tập tình 3.2 Kiến nghị Thời gian tiến hành làm đề tài khơng nhiều, cịn hạn chế trình độ chun mơn số lượng tài liệu tham khảo (vì mảng tập mới) nên chắn khơng thể tránh khỏi thiếu sót Tơi mong đóng góp đồng nghiệp để đề tài hồn thiện Mặt khác tơi mong muốn bạn đồng nghiệp tiếp tục viết thêm skkn liên quan đến chuyên đề để hoàn thiện bổ sung thêm phương pháp dạy học giúp em lĩnh hội tốt chuyên đề Tôi xin chân thành cảm ơn! XÁC NHẬN Thanh Hóa, ngày 20 tháng năm 2021 CỦA THỦ TRƯỞNG ĐƠN VỊ Tơi xin cam đoan SKKN viết, không chép nội dung người khác Nguyễn Thị Thu Thủy Nguyễn Thị Hà 20 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com TÀI LIỆU THAM KHẢO Sách giáo khoa, sách giáo viên Giải tích 12 nâng cao Sách tập Giải tích 12 nâng cao Báo tốn học tuổi trẻ Các đề thi TNTHPT Quốc gia từ năm 2017 đến Các đề thi mẫu Bộ giáo dục đào tạo từ năm 2017 đến Đề thi thử trường THPT toàn quốc Tài liệu mạng xã hội UAN VAN CHAT LUONG download : add luanvanchat@agmail.com DANH MỤC SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG SÁNG KIẾN KINH NGHIỆM NGÀNH GIÁO DỤC VÀ ĐÀO TẠO HUYỆN, TỈNH VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN Họ tên tác giả: Nguyễn Thị Hà Chức vụ đơn vị công tác: Giáo viên Tốn trường THPT Đơng Sơn TT Tên đề tài SKKN Sử dụng phương pháp đọc đồ thị hàm số giúp học sinh lớp 12 giải số toán liên quan đến đồ thị Sử dụng phương pháp đọc đồ thị hàm số giúp học sinh lớp 12 giải số toán liên quan đến đồ thị Sử dụng phương pháp đọc đồ thị hàm số giúp học sinh lớp 12 giải số toán liên quan đến đồ thị UAN VAN CHAT LUONG download : add luanvanchat@agmail.com ... SKKN Sử dụng phương pháp đọc đồ thị hàm số giúp học sinh lớp 12 giải số toán liên quan đến đồ thị Sử dụng phương pháp đọc đồ thị hàm số giúp học sinh lớp 12 giải số toán liên quan đến đồ thị Sử dụng. .. 2017 đến nay, khả phân tích xử lý dạng tập học sinh yếu Trước thực trạng tiếp tục chọn đề tài ? ?Sử dụng phương pháp vẽ thêm đường phụ giúp học sinh lớp 12 giải số tập liên quan đến đồ thị hàm số? ??... dạng tập liên quan đến đồ thị hàm số sáng kiến kinh nghiệm tơi lại Hội đồng khoa học ngành xếp loại C Năm học 2019-2020 nghiên cứa dạng tập liên quan đến đồ thị hai hàm số , , hay đồ thị ba hàm số