Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 29 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
29
Dung lượng
1,07 MB
Nội dung
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA TRƯỜNG THPT THẠCH THÀNH I SÁNG KIẾN KINH NGHIỆM SỬ DỤNG KHOẢNG CÁCH ĐỂ TÍNH GĨC TRONG HÌNH HỌC KHƠNG GIAN LỚP 11 Người thực hiện: Lê Ngọc Phương Chức vụ: Giáo viên SKKN thuộc lĩnh vực (mơn): Tốn MỤC LỤC THANH HÓA NĂM 2021 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Phần MỞ ĐẦU 1.1 1.2 1.3 1.4 Lí chọn đề tài Mục đích nghiên cứu Đối tượng nghiên cứu Phương pháp nghiên cứu Phần NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lí thuyết 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.3 Các giải pháp thực 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, 18 với thân, đồng nghiệp nhà trường Phần KẾT LUẬN – KIẾN NGHỊ 3.1 Kết luận 3.2 Kiến nghị, đề xuất TÀI LIỆU THAM KHẢO LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Phần MỞ ĐẦU 1.1 Lí chọn đề tài Trong kỳ thi học sinh giỏi tỉnh Thanh Hóa kỳ thi THPT Quốc gia năm vừa qua, có số dạng tốn hình học khơng gian đề thi mà học sinh thường gặp tính tỉ số, tính góc, độ dài đoạn thẳng, thể tích khối đa diện… dạng tốn liên quan đến tính góc đường thẳng với mặt phẳng hay góc mặt phẳng cắt thường gây lúng túng cho học sinh Nguyên nhân cách dựng góc đường thẳng với mặt phẳng dựng góc hai mặt phẳng vấn đề khó học sinh giáo viên phải có trí tưởng tượng tư tốt hình học khơng gian Để giảm bớt khó khăn làm tăng thêm hứng thú học tập cho học sinh vấn đề này, tơi xin trình bày sáng kiến kinh nghiệm với đề tài “SỬ DỤNG KHOẢNG CÁCH ĐỂ TÍNH GĨC TRONG HÌNH HỌC KHƠNG GIAN LỚP 11” Qua phát triển tư sáng tạo học sinh Các toán khai thác viết có lời giải khác tài liệu, qua thực tế dạy học sinh định hướng cho học sinh khai thác xây dựng toán quy vấn đề quen thuộc đơn giản tính khoảng cách từ điểm đến mặt phẳng Từ góp phần phát huy tính tích cực học sinh, tăng cường khả tự học, tự khám phá Rèn luyện cho học sinh tư linh hoạt, sáng tạo 1.2 Mục đích nghiên cứu Với mục đích thứ rèn luyện khả sáng tạo Tốn học, trước tập tơi thường cho học sinh tìm nhiều cách giải, đồng thời người thầy giáo, cô giáo phải gợi ý cung cấp cho học sinh nhiều cách giải Trên sở học sinh tự tìm cách giải hợp lý Phát cách giải tương tự khái quát phương pháp đường lối chung Trên sở với tốn cụ thể em khái quát hoá thành toán tổng quát xây dựng tốn tương tự Thứ hai mong muốn bổ sung phương pháp bồi dưỡng cho học sinh giỏi trước đến Xây dựng phương pháp rèn luyện khả sáng tạo Tốn cho học sinh cho lúc nơi em tự phát huy lực độc lập sáng tạo LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com 1.3 Đối tượng nghiên cứu Các tốn xác định tính góc đường thẳng với mặt phẳng, xác định tính góc mặt phẳng không gian 1.4 Phương pháp nghiên cứu Để thực mục đích nhiệm vụ đề tài, q trình nghiên cứu tơi sử dụng nhóm phương pháp sau: + Nghiên cứu loại tài liệu sư phạm có liên quan đến đề tài + Phương pháp quan sát (hoạt động dạy - học giáo viên HS) + Phương pháp điều tra (nghiên cứu chương trình, hồ sơ chun mơn ) + Phương pháp đàm thoại vấn (lấy ý kiến giáo viên HS thông qua trao đổi trực tiếp) + Phương pháp thực nghiệm LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Phần NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lí luận sáng kiến kinh nghiệm 2.1.1 Cơ sở triết học: Theo triết học vật biện chứng, mâu thuẫn động lực thúc đẩy trình phát triển Vì trình giúp đỡ học sinh, Giáo viên cần trọng gợi động học tập giúp em thấy mâu thuẫn điều chưa biết với khả nhận thức mình, phát huy tính chủ động sáng tạo học sinh việc lĩnh hội tri thức Tình phản ánh cách lơgíc biện chứng quan niệm nội thân em Từ kích thích em phát triển tốt 2.1.2 Cơ sở tâm lí học: Theo nhà tâm lí học: Con người bắt đầu tư tích cực nảy sinh nhu cầu tư đứng trước khó khăn cần phải khắc phục Vì GV cần phải để học sinh thấy khả nhận thức với điều biết với tri thức nhân loại Căn vào quy luật phát triển nhận thức hình thành đặc điểm tâm lí từ lớp cuối cấp THCS, học sinh bộc lộ thiên hướng, sở trường hứng thú lĩnh vực kiến thức, kĩ định Một số học sinh có khả ham thích Tốn học, mơn khoa học tự nhiên; số khác lại thích thú văn chương mơn khoa học xã hội, nhân văn khác Ngồi cịn có học sinh thể khiếu lĩnh vực đặc biệt… Thực tế giảng dạy cho thấy nhiều học sinh học hình học khơng gian em thường có tâm lí: tập phần q khó, hình vẽ khơng trực quan, khơng biết cách trình bày lời giải tốn cho mạch lạc, dễ đọc Đặc biệt kiến thức hình học phẳng em quên nhiều, khó vận dụng vào việc giải tập khơng gian Trong việc dựng góc đường thẳng với mặt phẳng góc hai mặt phẳng ln ln vấn đề khó học sinh giáo viên 2.1.3 Cơ sở giáo dục học: Để giúp em học tốt GV cần tạo cho học sinh hứng thú học tập Cần cho học sinh thấy nhu cầu nhận thức quan trọng, người muốn phát triển LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com cần phải có tri thức cần phải học hỏi Thầy giáo biết định hướng, giúp đỡ đối tượng học sinh 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.2.1.Thời gian bước tiến hành: Tìm hiểu đối tượng học sinh năm học 2019-2020, 2020-2021 2.2.2 Khảo sát chất lượng đầu năm mơn hình học: Thơng qua việc cho học sinh làm tập hình học khơng gian kết thu có 45% học sinh vẽ hình làm số ý đơn giản 2.2.3 Tìm hiểu nguyên nhân dẫn đến kết trên: Tơi nhận thấy đa số học sinh có kết chưa cao Vì việc lĩnh hội kiến thức rèn luyện kĩ học sinh đòi hỏi nhiều công sức thời gian Sự nhận thức học sinh thể rõ: - Các em cịn lúng túng việc dựng góc đường thẳng với mặt phẳng góc hai mặt phẳng - Kiến thức nắm chưa - Khả tưởng tượng hạn chế - Ý thức học tập học sinh chưa thực tốt - Nhiều học sinh có tâm lí sợ học mơn hình học khơng gian Đây mơn học địi hỏi tư duy, phân tích em Thực khó khơng HS mà cịn khó GV việc truyền tải kiến thức tới em Hơn điều kiện kinh tế khó khăn, mơi trường giáo dục, động học tập,… nên chưa thực phát huy hết mặt mạnh học sinh Nhiều em hổng kiến thức từ lớp dưới, ý thức học tập chưa cao nên chưa xác định động học tập, chưa thấy ứng dụng to lớn mơn hình học đời sống Vì tơi nghiên cứu tìm hiểu đưa giải pháp khắc khục vấn đề hay gặp việc dựng tính góc khơng gian, giúp học sinh giải vấn đề khó khănđã nêu 2.3 Các giải pháp thực Để tránh gặp phải khó khăn việc dựng hình để tính góc, tơi đưa giải pháp sau hiệu tính loại góc đường thẳng với mặt phẳng góc hai mặt phẳng cắt LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Dạng Sử dụng khoảng cách để tính góc đường thẳng mặt phẳng a) Trong không gian cho đường thẳng góc với mặt phẳng gọi cắt mặt phẳng ) Chọn điểm M thuộc góc đường thẳng mặt phẳng ( không vuông , M khơng trùng với I ta có: (1) b) Nếu M, N phía với (P) ta có: c) Nếu M, N khác phía với (P) ta có (3) LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Ví dụ Cho hình chóp tứ giác S ABCD có SA AB a Gọi M trung điểm cạnh BC Tính sin góc tạo đường thẳng DM với mặt phẳng SAB ? Lời giải S H A E B I M O D C Gọi AC giao BD O O trung điểm Ta có SA AB a SAC vuông cân S SO a 2 Kẻ DM cắt AB E SAB E Gọi góc tạo DM SAB DM Áp dụng công thức (1) ta LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Ta có DM Kẻ OI AB AB SOI Kẻ OH SI OH SAB d D; SAB d O ; SAB Xét SOI vuông O; OH đường cao: OH SO d sin Ví dụ Cho hình chóp tứ giác S ABCD có cạnh đáy a , tâm O Gọi M N trung điểm SA BC Biết góc MN ABCD 60 Tính sin góc đường thẳng MN mặt phẳng Lời giải S M A F P N O D B C Gọi P , F trung điểm OA ,OB Suy ra: NF song song OP Gọi I NP OF suy I trung điểm NP Bài Cho hình chóp có đáy hình vng, mặt bên tam vng cân S nằm mặt phẳng vng góc với mặt phẳng đáy Tính cơsin góc đường thẳng SD mặt phẳng Bài Cho hình thoi ABCD có Gọi M trung điểm AB, đường thẳng d vng góc với mặt phẳng ( ABCD) điểm M lấy điểm S thay đổi khác M Tính theo a độ dài SM để góc SC (SAD) có số đo lớn Bài Cho hình lập phương cạnh Lấy điểm cho Tính góc tạo mặt phẳng Dạng Sử dụng khoảng cách để tính góc đường thẳng mặt phẳng Q Cho hai mặt phẳng P A P , dựng AK Khi d Q d ; AH d Từ Q AKH nên H P;QAKH α P Suy sin A K d hay Ví dụ Cho hình chóp có đáy vng góc với mặt đáy Gọi góc tạo hai mặt phẳng hình vng cạnh trung điểm cạnh cạnh bên Tính sin Lời giải 10 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Kẻ hình bình hành suy Do Áp dụng cơng thức (4) ta có Vì Vì nên nên Từ đó, Ta có: Suy Ví dụ Cho hình chóp S ABCD có SA vng góc với mặt phẳng SA a , đáy ABCD hình thang vng A B với AB BC ABCD , a , AD 2a Tính góc hai mặt phẳng SBC SCD Lời giải Gọi góc hai mặt phẳng SBC S SCD Áp dụng công thức (4) ta có Kẻ AE SB E a AE SBC , có E Da 11 LUAN VAN CHAT LUONG download : Badda luanvanchat@agmailC.com d D ; SBC d A ; SBCAE hình vng cạnh CD SACCD SC Vậy sin Ví dụ Cho khối chóp Cạnh bên trung điểm cạnh 30 có đáy hình bình hành , vng góc với mặt đáy Gọi Tính góc hai mặt phẳng Lời giải Ta có : Gọi trung điểm 12 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Dễ dàng chứng minh Gọi , đồng quy trung điểm Như trung điểm góc hai mặt phẳng áp dụng công thức (4) ta có Trong Hạ Ta có , , Mặt khác Vậy Bài tập vận dung Bài Cho hình lăng trụ Gọi có góc hai mặt phẳng , , , tính 13 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Bài Cho hình lăng trụ đứng , , , đáy , góc hai mặt phẳng , biết hai mặt phẳng Mặt phẳng Tính cơsin có độ dài cạnh bên Tính sin góc Đáy góc tạo Bài Cho hình chóp vng góc đỉnh trung điểm Bài Cho hình lăng trụ đứng tam giác vng tam giác cân có đáy tam giác vng cân mặt phẳng tạo với góc thỏa mãn , tính , hình chiếu điểm nằm đoạn thẳng góc Gọi mặt phẳng góc tạo tạo với mặt phẳng 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường Trong q trình dạy dạng tốn tính góc đường với mặt góc hai mặt phẳng hình học khơng gian học sinh lớp 11B 1, tác giả thấy học sinh hứng thú, tốn áp dụng phương pháp thơng thường dựng góc mà gặp khó khăn sử dụng “Phương pháp khoảng cách” chuyện trở nên dễ dàng Để kiểm nghiệm xác, tác giả cho đề kiểm tra 45 phút lớp 11B1 11B4, lớp lớp 11B thực nghiệm đề tài này, lớp 11B4 lớp đối chứng Đề kiểm tra sau: Câu (5 điểm) thẳng mặt phẳng Cho hình chóp , , tạo với mặt phẳng có đáy hình thang vng vng góc với mặt phẳng góc Tính sin góc , đường với 14 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Câu (5 điểm) Cho lăng trụ tam giác Tính cơsin góc tạo mặt phẳng có tất cạnh mặt phẳng Sau chấm tác giả thu kết sau Điểm Lớp thực nghiệm (48 học sinh) Lớp đối chứng (45 học sinh) Các điểm – 10 có cách giải phổ biến sau: Câu Ta có: hình chiếu mặt phẳng Gọi trung điểm Theo giả thiết ta có Từ giả thiết, ta có tứ giác Mặt khác nên tam giác Trong kẻ hình vng đường trung tuyến tam giác vng hay (1) Ta có: Từ (1) (2) Lại có: (2) Ta có: 15 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Trong tam giác vng ta có vng cân Suy Gọi Ta có: Suy Câu Ta có phẳng Gọi góc mặt C B a , A K Gọi giác B' trung điểm Ta có H C' a A' (vì tam đều) mặt khác ( Trong mặt phẳng ) Suy kẻ suy hay Tam giác cân có Suy Vậy 16 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Kết kiểm tra lớp thực nghiệm đối chứng cho thấy, lớp 11B1 đa số học sinh hiểu bài, vận dụng tốt đổi “Phương pháp sử dụng khoảng cách tính góc đường thẳng với mặt phẳng góc hai mặt phẳng” vào việc giải tập; học sinh thấy hứng thú tính tự nhiên gần gũi đạt hiệu bất ngờ phương pháp Cịn lớp 11B4, hồn thành kiến thức định nghĩa cách xác định loại góc gặp dạng tốn nêu trên, hầu hết học sinh lúng túng phải giải Trao đổi “Phương pháp sử dụng khoảng cách tính góc đường thẳng với mặt phẳng góc hai mặt phẳng” với đồng nghiệp tác giả nhận phản hồi tích cực Mặc dù kết không áp dụng cho nhiều tốn, nhiên với hiệu mà mang lại tốn kích thích tính sáng tạo tư cho người học, gợi trí tò mò ham hiểu biết vào lĩnh vực khác tốn học Đó điều tác giả tâm đắc thực đề tài Phần KẾT LUẬN – KIẾN NGHỊ 3.1 Kết luận Qua thời gian nghiên cứu sáng kiến vận dụng sáng kiến vào giảng dạy rút số kết sau: - Đã hình thành phương pháp tư duy, suy luận toán học vấn đề cần nghiên cứu đề tài cho học sinh cho lớp thực nghiệm - Bước đầu khẳng định tính khả thi, tính hiệu qua việc kiểm nghiệm thực nghiệm sư phạm - Giáo viên: Tạo tâm hứng thú, sẵn sàng lĩnh hội tri thức môn học để thúc đẩy tính tích cực tư học sinh, khắc phục tâm ngại, sợ tiếp cận 17 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com nội dung môn học Nếu có nhiều hình thức tổ chức dạy học kết hợp môn học trở lên hấp dẫn người học thấy ý nghĩa môn học - Về phương pháp dạy học, cần ý đến phương pháp lĩnh hội tri thức HS, giúp em có khả tiếp thu sáng tạo vận dụng linh hoạt tri thức tình đa dạng - Rèn luyện cho học sinh thói quen, tính kỉ luật việc thực kĩ giải toán thơng qua việc luyện tập; nhằm khắc phục tính chủ quan, hình thành tính độc lập, tính tự giác người học, thơng qua hình thành phát triển nhân cách em 3.2 Kiến nghị, đề xuất Xuất phát từ kiến thức chương trình học để xây dựng cách làm đạt hiệu cao phẩm chất mà người học toán làm tốn cần phải có Thiết nghĩ, việc bồi dưỡng học sinh giỏi mơn Tốn thực thành công giáo viên biết hướng dẫn cho học sinh tìm tịi khai thác từ kiến thức cũ cách làm sáng tạo đạt hiệu cao XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh Hóa, ngày 15 tháng 05 năm 2021 Tôi xin cam đoan SKKN viết, khơng chép nội dung người khác (Ký ghi rõ họ tên) TÀI LIỆU THAM KHẢO [1] Sách giáo khoa, sách tập Hình học 11 (Cơ bản), NXB Giáo Dục Năm 2007 [2] Ba thập kỷ đề thi toán vào trường đại học Việt Nam Nhà xuất Đại học Quốc gia TP Hồ Chí Minh 18 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com [3].Tuyển tập 30 năm Tạp chí Tốn học tuổi trẻ Nhà xuất Giáo dục Năm 1997 [4].Tuyển tập đề thi thử THPT Quốc gia từ năm 2018 đến 2020 Nguồn Internet DANH MỤC SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG SÁNG KIẾN KINH NGHIỆM NGÀNH GIÁO DỤC VÀ ĐÀO TẠO HUYỆN, TỈNH VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN Họ tên tác giả: Lê Ngọc Phương Chức vụ đơn vị cơng tác: Giáo viên Tốn trường THPT Thạch Thành TT Tên đề tài SKKN Cấp đánh giá xếp loại (Ngành GD cấp huyện/tỉnh; Tỉnh ) Năm học đánh giá xếp loại 19 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com 20 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ... tốt hình học khơng gian Để giảm bớt khó khăn làm tăng thêm hứng thú học tập cho học sinh vấn đề này, xin trình bày sáng kiến kinh nghiệm với đề tài “SỬ DỤNG KHOẢNG CÁCH ĐỂ TÍNH GĨC TRONG HÌNH HỌC... trường Trong q trình dạy dạng tốn tính góc đường với mặt góc hai mặt phẳng hình học không gian học sinh lớp 11B 1, tác giả thấy học sinh hứng thú, tốn áp dụng phương pháp thơng thường dựng góc mà... gặp khó khăn sử dụng “Phương pháp khoảng cách? ?? chuyện trở nên dễ dàng Để kiểm nghiệm xác, tác giả cho đề kiểm tra 45 phút lớp 11B1 11B4, lớp lớp 11B thực nghiệm đề tài này, lớp 11B4 lớp đối chứng