ĐềthiDựtrữkhối A-năm 2007
Đề I
Câu I: Cho hàm số
2
x4x
y
x2
3
−
++
=
−
1. Khảo sát và vẽ đồ thị hàm số.
2. Chứng minh rằng tích các khoảng cách từ một điểm bất kỳ trên đồ thị
hàm số đến các đường tiệm cận của nó là hằng số.
Câu II:
1. Giải phương trình:
11
sin 2x sin x 2cot g2x
2sin x sin 2x
+− − =
2. Tìm m để phương trình:
(
)
2
mx 2x21x(2x)0(2−+++ −≤ ) có
nghiệm x
0,1 3
⎡⎤
∈+
⎣⎦
Câu III:
Trong không gian Oxyz cho hai điểm A (-1;3;-2), B (-3,7,-18) và
mặt phẳng (P): 2x - y + z + 1 = 0
1. Viết phương trình mặt phẳng chứa AB và vuông góc với mp (P).
2. Tìm tọa độ điểm M
∈ (P) sao cho MA + MB nhỏ nhất.
Câu IV:
4
0
2x 1
x
12x1
+
=
++
∫
Id 1. Tính
2. Giải hệ phương trình:
)Ry,x(
132y2yy
132x2xx
1x2
1y2
∈
⎪
⎩
⎪
⎨
⎧
+=+−+
+=+−+
−
−
Câu Va (cho chương trình THPT không phân ban):
1. Trong mặt phẳng Oxy cho đường tròn (C) : x
2
+ y
2
= 1. Đường tròn (C')
tâm I (2,2) cắt (C) tại các điểm A, B sao cho
AB 2= . Viết phương trình
đường thẳng AB.
2. Có bao nhiêu số tự nhiên chẵn lớn hơn 2007 mà mỗi số gồm 4 chữ số
khác nhau?
Câu Vb (cho chương trình THPT phân ban):
1. Giải bất phương trình:
2
x4 2
(log 8 log x )log 2x 0
+
≥
2. Cho lăng trụ đứng ABCA
1
B
1
C
1
có AB = a, AC = 2a, AA
1
2a 5= và
. Gọi M là trung điểm của cạnh CC
1
. Chứng minh MB⊥MA
1
và tính khoảng cách d từ điểm A tới mặt phẳng (A
1
BM).
o
120BAC =
∧
Bài giải
Câu I:
1. Khảo sát và vẽ đồ thị (Bạn đọc tự làm)
2. Gọi (C ) là đồ thị của hàm số.
M(x,y)
∈ ( C ) ⇔
7
yx2
x2
=− + +
−
Phương trình tiệm cận xiên
yx2xy20
=
−+ ⇔ +−=
khoảng cách từ M đến tiệm cận xiên là
1
xy2
7
d
22x2
+−
=
=
−
khoảng cách từ M đến tiệm cận đứng là
2
dx2
=
−
Ta có
12
77
dd x 2
2x 2 2
=−
−
= : hằng số.
Câu II:
1. Giải phương trình :
11
sin 2x sin x 2cot g2x
2sin x sin 2x
+− − = (1)
(1) ⇔ − cos
2
2x − cosxcos2x = 2cos2x và sin2x ≠ 0
⇔ =++=
2
cos2x 0 v2 cos x cosx 1 0(VN)
⇔ cos2x = 0 ⇔
π
ππ
=+π⇔=+
2x k x k
242
2. Đặt
2
tx2x=−+2 ⇔ t
2
− 2 = x
2
− 2x
Bpt (2) ⇔
−
≤≤≤∈+
+
2
t2
m(1t2),dox[0;1
t1
3]
Khảo sát
với 1 ≤ t ≤ 2
2
t2
g(t)
t1
−
=
+
g'(t)
2
2
t2t2
0
(t 1)
++
=
+
>. Vậy g tăng trên [1,2]
Do đó, ycbt bpt ⇔
2
t2
m
t1
−
≤
+
có nghiệm t ∈ [1,2]
⇔
[]
∈
≤=
t1;2
2
m max g(t) g(2)
3
=
Câu III:
1. Ta có cùng phương với
AB ( 2,4, 16)=− −
uuur
=
−−
r
a(1,2,8)
mp(P) có PVT
n(2,1,1)=−
uur
Ta có = (6 ;15 ;3) cùng phương với (2;5;1)
uurr
[n,a]
Phương trình mp chứa AB và vuông góc với (P) là :
2(x + 1) + 5(y − 3) + 1(z + 2) = 0
⇔ 2x + 5y + z − 11 = 0
2. Tìm M ∈ (P) sao cho MA + MB nhỏ nhất.
Vì khoảng cách đại số của A và B cùng dấu nên A, B ở cùng phía với
Mp (P). Gọi A' là điểm đối xứng với A qua (P)
Pt AA' :
x1 y3 z2
211
+−+
==
−
AA' cắt (P) tại H, tọa độ H là nghiệm của
−++=
⎧
⎪
⇒−
⎨
+−+
==
⎪
−
⎩
2x y z 1 0
H(1,2, 1)
x1 y3 z2
211
Vì H là trung điểm của AA' nên ta có :
HAA'
HAA'
HAA'
2x x x
2y y y A'(3,1,0)
2z z z
=+
⎧
⎪
=+ ⇒
⎨
⎪
=+
⎩
Ta có
A ' (cùng phương với (1;-1;3) ) B ( 6,6, 18)=− −
uuuur
Pt đường thẳng A'B :
−
−
=
=
−
x3 y1 z
113
Vậy tọa độ điểm M là nghiệm của hệ phương trình
−++=
⎧
⎪
⇒−
−−
⎨
==
⎪
−
⎩
2x y z 1 0
M(2,2, 3)
x3 y1 z
113
Câu IV:
2
t 2x 1 t 2x 1 2tdt 2dx dx tdt=+⇒=+⇔=⇔=1. Đặt
Đổi cận t(4) = 3, t(0) = 1
Vậy
433
2
011
2x 1 t 1
Idxdtt1
1t t1
12x1
+
⎛⎞
===−+
⎜⎟
++
++
⎝⎠
∫∫∫
dt
=
3
2
1
t
tlnt1 2ln2
2
⎡⎤
−+ + = +
⎢⎥
⎢⎥
⎣⎦
2. Giải hệ phương trình
−
−
⎧
+−+=+
⎪
⎨
⎪
+−+=+
⎩
2y1
2x1
xx2x23 1
(I)
yy2y23 1
Đặt u = x
− 1, v = y − 1
(I) thành
⎧
+
+=
⎪
⎨
⎪
+
+=
⎩
2v
2u
uu13
(II)
vv13
Xét hàm f(x)
2
xx1
=
++
f ´(x)
+
++
=+ = > ≥
+++
2
222
xx
xx1x
10
x1 x1 x1
Vậy f đồng biến nghiêm cách trên R.
Nếu u > v
⇒f(u) > f(v) v > u ( vô lý ) ⇒>
v
33
u
⇒
Tương tự nếu v > u cũng dẫn đến vô lý
Do đó hệ (II)
⎧⎧
⎪⎪
++= = +−
⇔⇔
⎨⎨
==
⎪⎪
⎩⎩
2u u2
uu13 13(u1u)(1
uv uv
)
Đặt: g(u)
u2
3( u 1 u)=+−
⎛⎞
⇒= +−+ −
⎜⎟
⎜⎟
+
⎝⎠
u2 u
2
u
g'(u) 3 ln3( u 1 u) 3 1
u1
()
(
)
Ru,0
1u
1
3lnu1u3u'g
2
2u
∈∀>
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
−−+=
Vậy g(u) đồng biến nghiêm cách trên R.
Ta có g(0) = 1. Vậy u = 0 là nghiệm duy nhất của (1)
Nên (II)
⇔ u = 0 = v
Vậy (I)
⇔ x = y = 1.
Câu Va:
1.Đường thẳng OI nối 2 tâm của 2 đường tròn (C), (C') là đường phân giác
y = x . Do đó, đường AB
⊥ đường y = x ⇒ hệ số góc của đường thẳng AB
bằng
− 1.
Vì AB
2= ⇒ A, B phải là giao điểm của (C) với Ox, Oy.
Suy ra
A(0,1);B(1,0)
A'( 1,0);B'(0, 1)
⎡
⎢
−−
⎣
Suy ra phương trình AB : y =
− x + 1 hoặc y = − x − 1.
Cách khác: phương trình AB có dạng: y = − x + m.
Pt hoành độ giao điểm của AB là
x
2
+ (− x + m)
2
= 1
⇔
−+−=
22
2x 2mx m 1 0 (2)
(2) có
Δ= −
/
2
2m, gọi x
1
, x
2
là nghiệm của (2) ta có :
=⇔ − =⇔ − =
22
12 12
AB 2 2(x x ) 2 (x x ) 1
2
Δ
⇔=⇔−=⇔=±
/
2
2
4
12m1m
a
1
Vậy phương trình AB : y =
− x
±
1 .
2. Gọi
=
123 4
naaaa là số cần lập.
. TH1 : a
4
= 0, ta có 8 cách chọn a
1
(vì a
1
≥ 2)
8 cách chọn a
2
7 cách chọn a
3
(1 cách chọn a
4
)
Vậy ta có 8.8.7.1 = 448 số n.
. TH2 : a
4
≠ 0 vì a
4
chẵn. Ta có : 4 cách chọn a
4
7 cách chọn a
1
8 cách chọn a
2
7 cách chọn a
3
Vậy ta có 4.7.8.7 = 1568 số n
Vậy cả 2 trường hợp ta có : 448 + 1568 = 2016 số n.
Câu Vb:
1. Điều kiện x > 0 , x ≠ 1
(1)
⎛⎞
⇔+
⎜⎟
⎝⎠
42
8
11
2 log x log 2x 0
log x 2
≥
()
⎛⎞
⎜⎟
⇔+ +
⎜⎟
⎜⎟
⎝⎠
22
2
1
log x log x 1 0
1
log x
3
≥
⎛⎞
++
⇔+ ≥⇔
⎜⎟
⎝⎠
⇔≤− >⇔<≤>
2
22
2
22
22
log x 1 log x 1
(log x 3) 0 0
log x log x
1
log x 1vlog x 0 0 x v x 1
2
≥
2.
(Bạn đọc tự vẽ hình)
Chọn hệ trục Axyz sao cho: A ≡ 0,
(
)
−C2a,0,0,
1
A (0,0,2a 5)
⎛⎞
⇒
⎜⎟
⎜⎟
⎝⎠
aa3
A(0;0;0), B ; ; 0
22
và −M( 2a,0,a 5)
⎛⎞
⇒=−− =
⎜⎟
⎜⎟
⎝⎠
uuuur uuuuur
1
53
BM a ; ; 5 , MA a(2; 0; 5)
22
Ta có: =−+=⇒ ⊥
uuuur uuuuur
2
11
BM.MA a ( 5 5) 0 BM MA
Ta có thể tích khối tứ diện AA
1
BM là :
Δ
⎡⎤
==
⎣⎦
⎡⎤
==
⎣⎦
uuuuur uuur uuuur
uuur uuuuur
3
1
2
BMA 1
1
1a
VAA.AB,AM
63
1
SMB,MA3
2
15
a3
Suy ra khoảng cách từ A đến mp (BMA
1
) bằng ==
3V a 5
d.
S3
Cách khác:
+ Ta có
=+ =
222
1111
AM AC CM 9a
2
2
2
2
=+− =
222 0
BC AB AC 2AB.AC.cos120 7a
=+ =
22 2
BM BC CM 12a
=+== +
2222 2
11 1
AB AA AB 21a AM MB
⇒ vuông góc với MB
1
MA
+ Hình chóp MABA
1
và CABA
1
có chung đáy là tam giác ABA
1
và đường
cao bằng nhau nên thể tích bằng nhau.
⇒= = = =
3
MABA CABA 1 ABC
11
11
VV V AA.S a15
33
⇒==
1
MBA 1
1
3V 6V a 5
d(a,(MBA ))
SMB.MA
=
3
@
PHẠM HỒNG DANH
(Trung tâm Bồi dưỡng văn hóa và Luyện thiđạihọc Vĩnh Viễn)
. chóp MABA
1
và CABA
1
có chung đáy là tam giác ABA
1
và đường
cao bằng nhau nên thể tích bằng nhau.
⇒= = = =
3
MABA CABA 1 ABC
11
11
VV V AA.S a1 5
33
. uuuuur
3
1
2
BMA 1
1
1a
VAA.AB,AM
63
1
SMB,MA3
2
15
a3
Suy ra khoảng cách từ A đến mp (BMA
1
) bằng ==
3V a 5
d.
S3
Cách khác:
+ Ta có
=+ =
222
1111
AM AC