1. Trang chủ
  2. » Tất cả

Dạy học phát hiện và giải quyết vấn đề kết hợp với dạy học theo nhóm đối với môn toán ở phổ thông

3 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 106,64 KB

Nội dung

DAY HOC PHAT HIEH UA GIAI QUVET UAH DE KET H0P Uflll • • • • DAY HOC THEO NHOM DOI Vdl MON TOAN 6 PHO THONG o TQDLTCTHAO H ien nay, d cdc trudng phd thdng dang dp viec cdc em ddc ldp GQVD Khd khdn ndy[.]

DAY HOC PHAT HIEH UA GIAI QUVET UAH DE KET H0P Uflll DAY HOC THEO NHOM DOI Vdl MON TOAN PHO THONG • • • • o ien nay, d cdc trudng phd thdng dang d p viec cdc em ddc ldp G Q V D Khd khdn ndy trudc dyng phuong phdp dgy hgc (PPDH) tfch cyc vdo qud trinh dgy hgc (DH), d d , viec ket hgp giua cdc PPDH Id mdt nhCrng bien phdp hCru hieu nhdm gdp phdn ndng cao hieu qud DH Trong DH, cd the ket hgp giCfo cdc PPDH mdt cdch linh hogt nhdm phdt huy tfnh ehtJ ddng, sdng tgo cua hgc sinh (HS) hgc tdp Bdi Viet trinh bdy ve sy ket hgp giCro hinh thtic DH theo nhdm (DHTN) vd dgy hgc phdt hien vd gidi quyet vd'n d l (DHPH&GQVD) DH todn d phd thdng DHTN vd DHPH&GQVD DHTN Id mdt h-ong nhtrng PPDH tfch cyc nhdm hudng tdi myc tieu giup ngudi hgc tham gio vdo qud trinh hgc tdp mdt edeh ehu ddng, phdt huy dugc tfnh sdng tgo, trdnh tfnh thy ddng, y Igi vdo sy hudng ddn cua gido vien (GV) Vdi hinh thirc DH ndy, ngudi hgc dugc Idm viec hgp tde vdi theo cdc nhdm nhd de hodn thdnh nhiem vy ehung, mdi thdnh vien nhdm d i u cd co hdi thorn gia, thye hien nhiem vy hoc tgp md khdng cdn sy gidm sdt tryc hep ctia GV; GV khdng ehf ddng vol trd Id ngudi truyen dgt kien thiie md cdn Id ngudi d i l u khien, thie't ke, td chtic cdc hogt dgng hgc tdp cho HS, giup HS chiem h'nh tri thirc, dgt dugc cdc myc heu DH PH&GQVO Id PPDH d d , GV Id ngudi td chtic, tgo ro cdc tinh hudng cd vd'n d l , ggi eho HS nhu cdu G Q V D , Idi cudn cdc em vdo cdc hogt dgng nhdn thtic nhdm iTnh hdi tri thtic mdi; HS Id ngudi chu ddng, tfch eye de PH ro vdn de vd GQVD Tuy nhien, de G Q V D , HS phdi vugt qua nhtrng khd khdn hdm chira vd'n de dd bdng sy nd lyc cuo bdn thdn Sou G Q V D , HS thu nhdn duge nhirng tri thtic vd kTndng mdi Qud trinh nghien ciru If ludn vd khdo sdt thyc t i l n ve PPDH PH&GQVD d plid thdng, chung tdi nhdn thd'y ed mdt so khd khdn ehu yeu sou ddy: Khd khdn viec thu hut HS todn Idp vdo het mgt so GV chua chtJ trgng de'n viec tgo tinh hudng DH cd vd'n 6e de thu hut HS tham gio vdo ede hogt ddng nhdn thtic; Trong mgt Idp hgc, trinh nhdn thirc cuo HS Id khdng ddng d i u , so HS ty gide, tfch eye, chu ddng GQVD cdn ehua n h i l u Do vdy, viec viec dgt ro cdc gidi phdp khde phye khd khdn ndi tren vd de phdt trien tu phe phdn, huy ddng tdi h i m lyc cuo HS Id mdt yeu cdu ed'p bdch, ddi hdi sy no lye eao CIJO mdi GV Ket h o p giira hai hinh thtic DHTN vdi DHPH&GQVD Trong DH, viec ket hgp giira hai hinh thiic DHTN vd DHPH&GQVD dugc vdn dyng mdt cdch linh hogt, DHTN cd the dugc thye hien d bdt cti khdu ndo quy trinh DHPH&GQVD Vdi hinh thtic ket hgp ndy, hogt ddng cd nhdn cija HS co the ludn phien vdi cdc hogt ddng bgc tgp theo nhdm vdi sy giup d d cuo GV De ket hgp giua hai binh thtic ndy, thdng thudng GV cd the thyc hien cdc budc DH cy the nhu sou: Budc 1: Ldm viee ehung theo Idp GV dua ro cho cd Idp cde tinh hudng cd vd'n de, cdc nhiem vy hgc tdp chung, cd Idp suy nghT, tim tdi de PH vd'n de Sou d d , GV ehia Idp thdnh cdc nhom nhd (mdi nhdm khdng vugt qud 10 HS; trinh hgc tdp cuo cdc nhdm Id tuong duong) vd phan cdng, gioo nhiem vy cho tting nhdm, hudng dan HS cdch Idm viee theo nhdm, mdi nhdm thudng cti mdt nhdm trudng Bude 2: Cde nhdm Idm viee de (}QVD Moi nhdm phdn edng edng viec ctia nhdm minh cho hing thdnh vien Idm viee ddc ldp, sou dd thdo ludn, thd'ng nhd't y kien vd cti mdt bgn (cd the Id nhdm trudng) len trinh bdy ket qud trudc Idp Trong qud trinh cdc nhdm thye hien nhiem vy, GV cd the hd trg cdn thiet H # TQDLTCTHAO * Tnroing Dai hoc Vinh Tap chi Giao due s6 (ki 2.9/2011) Budc 3: Ldm viec chung theo Idp Cdc nhdm Idn lugt bdo edo ket qud trude Idp, sou dd cd Idp thdo ludn GV Id ngudi tdng ket, khdng djnh ket qud hgc tdp cuo cdc nhdm Cd the ket thuc g i d hgc d budc ndy hogc tiep hJC qud trinh DH vdi mdt vd'n de mdi khde Viec thdo ludn nhdm khdng nht/ng giup HS phdt trien dugc khd ndng gioo Hep vd cdc kT ndng hgc tdp (dgc hieu, phdn tfch, ddnh gid, ) md cdn ndng coo qud trinh nhdn thirc, quo dd HS ty gidi quyet dugc vdn d l Viec phd'i hgp hoi hinh thtic DH ndy cung cd the theo mdt quy trinh, md sy tham gio cija DHTN duge td chtic chf d khdu G Q V D , hodc eung cd, nghien ciiu sdu vd'n d l ; hing ndi dung DH md GV cd sy vgn dyng phu hgp M d t so' v i dy Vi dy 1: DH dmh If: The tich cua khdi Idng try bdng tieh sdcua dien tieh mat ddy vd chiiu eao cua Ididi Idng ty dd (Hinh hgc 12 ndng cao, \r 27) Bude 1: Ldm viec ehung theo Idp GV duo tinh hudng ggi vd'n d l , nhdm giup cdc em PH dinh If cdn neu: + Hdy ve khdi Idng try tam gide A B C A B C ; + Hdy tfnh the tfch cuo khdi Idng try dd dya vdo cdng thirc the tfch cuo khdi tti dien (edng thtic tfnh the tfch tti dien HS dd biet); + Tir d d , cde em hdy suy ro cdng thtic tfnh the tfch cuo mdt khdi Idng try cd ddy Id mdt da gide bdt ki? Sou d d , GV chio Idp thdnh cdc nhdm hgc tdp, cde nhdm ddc lgp hogt ddng de GQVD Bude 2: Cde nhdm Idm viee de GQVD Mdi cd nhdn nhdm ddc ldp suy nghT de PH vd'n d l Vdi tinh hudng GV duo ro vd sy hudng ddn cuo GV v l viec chio khdi Idng try dd thdnh cdc khdi hi dien, khdng md'y khd khdn, HS d l ddng nhgn thdy: cd the ehia khdi Idng try A B C A B C thdnh khdi tir dien bdi mdt phdng (ABC) vd (ABC), the tfch eua khdi Idng try se bdng tdng the tfch ctia khdi tu dien d d Khi d d , cdu hdi dugc dgt ro Id: the tfch ctio cde khdi tti dien dd ed bdng khdng? (the tfch cuo cde khdi tti dien Id bdng nhau) TCr do, HS d l ddng tfnh dugc edng thirc tfnh the tfch cuo mdt khdi Idng try tam gide se bang dien tfch ddy nhdn vdi chilu coo HS nhdn thd'y td't cd cdc khdi Idng try ed ddy bd't ki d i u ed the phdn chio thdnh cdc khdi Idng hij torn gide ed cung chilu coo Tdng cde the tfch cua chung chfnh Id the tfch cuo khdi Idng fry ban ddu Suy ra, the tfch cuo mdt Tap clii Giao due so (ki • 0/2011) khdi Idng try ed ddy Id mgt gide bdt ki cung vdn dugc tinh theo cdng thiie: V = S ^ h Cd nhdm thdo ludn, tdng hgrp y kien vd dua ro ket ludn: the tfch cuo khdi Idng try dugc tfnh Id: V = S^ h; (h: khodng cdch giCro mdt phdng chira 2'ddy) Budc 3: Cd lap tdng ket, GQVD, di den npi dung bdi hpc Cdc nhdm trinh bdy ket qud, ed Idp thdo ludn GV Id ngudi tdng ket cde y kien, khdng djnh ket qud hgc tdp cua cdc nhdm vd dua ro ket lugn chinh Id ndi dung ciia djnh If: The tieh eua khdi Idng try bdng tich cua dien tich ddy vd chiiu cao cua khdi Idng try (dinh If Hinh hgc 12 ndng coo, tr 27) Vi dy 2: Trong tam gide ABC bdt ki vdi BC = a, CA = b, AB = c vd R Id bdn kfnh dudng trdn =— n g o a i t i e p , ta c d : smA sin = -r—- = 2R sinC (Djnh If sin - Hinh hgc 10 ndng coo) Bude 1: GV dua tinh hudng yeu cau HS gidi quyet: Cho tam gide ABC vudng d A vdi BC = a, CA = b, AB = c vd R Id bdn kfnh dudng trdn ngogi tiep, -^-z =sinC -^-p; = '^^('); f^' to ludn cd: -r— sin = sinfi ddng thdi, GV duo ro cdc cdu hdi: 1) Odng thtic {*) edn dung trudng hgp tam gide ABC d i u khdng?; 2) Ddng thtic (*) cdn dung trudng hgp tam gide ABC bd't ki khdng? Hdy chung minh d i l u visa nhdn xet Sou dd, GV chio Idp thdnh cdc nhdm hgc tdp, phdn cdng, gioo nhiem vy cho nhdm: Mdi nhdm thyc hien nhiem vy vd trinh bdy ket qud tren phieu hgc tdp Budc 2: Cdc nhdm Idm viee deGQVD Nhiem vy cua cdc nhdm: duo ro phdn dodn vd chiing minh tinh hudng GV duo ro trudng hgp tam gide ABC vudng tgi A , dd cdc nhdm cd the nhdn thd'y 2R = BC Dya vdo cdng thirc cua hdm sin, hdm cosin, HS d l ddng suy ro duge: _ J ^ sin A sin sinC = 2R Sti dyng cde tfnh chd't CIJO mgt tam gide d i u , HS se suy ro dugc edng thtic (*) cdn dung trudng hgp tam gide ABC deu Tiep theo, cdc nhdm se ggp khd khdn hon viec chirng minh cdng thtic (*) dung trudng hgp ABC Id tam gide bdt ki GV cd the ggi y eho (Xem tiep trang 54) % edp nhdt nhung tri thiic tien Hen eua the gidi (tren CO sd ke thira cd chgn lgc nhtrng gid trj truyen thd'ng) Ben cgnh d d , de ndng cao chd't lugng dgy hgc mdn GDCD, cdn cd nhtfng gidi phdp tdc dgng ddng b d : Thay ddi nhdn thire x d hdi, ndng coo chdt lugng dgi ngu GV, tdng cudng thiet bj co sd vdt chdt, ddi mdi phuong phdp dgy hgc Q (1) Dinh Van Dtic - Duomg Thuy Nga (d6ng chu bien) Phuong phap day hoc mon Giao due cong dan & truong THPT NXB Dgi hoc suphgm, H 2009 (2) Bao gia cho tdi giao diJC 3.0, Vietnamnet, 15/3/2010 Tai lieu tham khao Mai Van Binh (tdng chu bien kiem chii bien) - Le Thanh Ha - Nguyen Thi Thanh Mai - Luu Thu Thuy Giao due eong dan 10 NXB Gido due, H 2009 Mai Van Binh (tdng chii bien Iciem chu bien) Pham Van Hiing - Pham Thanh Phd - Vu Hdng Tie'n - Phi Van ThiJC Giao due cdng dan 11 NXB Gido due H.2009 Mai Van Binh (tdng chu bien) - Tran Van Thing (chu bien) - Pham Kim Dung - Vuomg Thi Thanh Mai - Nguyen Thi Xuan Mai Giao due eong dan 12 NXB Gido due, H 2009 Nguyen Van Cu "M6t sd bien phap khSc phtJC diem kho day hpc giao diic cdng dan a trudng FTTH" Tgp ehi Gido due sd 240, ki 2/thang 6/2010 http://www.viettriduhoc.com SUMMARY The article presents several good and bad points of the current syllabus and textbook of the Civics subject at upper secondary level and proposes the direction for making and developing syllabus and textbook of this subject under the trend of International Integration Day hoc phat hien Thiet ke tai lieu (Tiep theo trang 45) (Tiep theo trang 47) cdc nhdm xet cde trudng hgp gdc A (hodc B hogc C) Id to hogc nhgn, sou dd dyng dudng trdn ngogi Hep tam gide ABC; tti d d , cdc nhdm Hep tyc nghien eiiu de chiing minh dugc edng thtic (*) Budc 3: Ldm viee ehung ed Idp Cde nhdm trinh bdy ket qud, G V tdng ket vd'n de * ** cuong SV d d hting thu hon qud trinh hgc tdp Hep thu ede khdi niem, hien tugng VL mdt cdch ed he thd'ng, ndm duge bdn chdt ctja vdn d l , biet lien he vd vdn dyng kien thirc d d hgc vdo eude sd'ng G N h u vdy, cd the ket hgp gitfa hoi hinh thi/c DH GQVD vdi DHTN DHTN dugc vdn dyng vdo khdu ndo Clio DH PH&GQVO Id hjy thudc vdo ndi dung, mye dfch DH md khdng nhd't thiet phdi ludn d khdu ndo; ndu GV vgn dyng mgt cdch linh hogt se gdp phdn ndng cao hieu qud DH mdn Todn d phd thdng • Tai lieu tham khao Nguyen Ba Kim Phmmg phap day hoe toan NXB Dgi hgc suphgm, H 2004 Doan Quynh (tdng chu bien) Hinh hoe 10 nang eao NXB Giaoduc Viet Nam, H 2010 Doan Quynh (tdng chu bien) Hinh hpc 12 nang cao NXB Gido due Viet Nam, H 2010 SUMMARY From the practice of mathematics teaching and learning today, problem finding and solving teaching combining with group teaching In general Mathematics Is the issue which the author is interested in and proposing several specific measures Tai lieu tham khao VO Qudc Chung - Le Hai Y^n De tu hoe dat hieu qua NXB Dgi hgc suphgm, H 2004 Nguyen Dtic Tham - NguySn Nggc Hung Td ehih: hoat ddng nhan thuc eho sinh vien day hoc vat If u truong phd thdng NXB Dgi hgc qu6c gia,\{ 1999 Nguyen Canh Toin Day - tu hoc NXB Gido due, H 2001 SUMMARY Nowadays, students of technology colleges have difficulties in conducting their ovm self study, one problem of which is how to choose course books or materials suitable for their own self-study abilities This paper towards presents the author's attempts designing self-study materials with modulebased Instructions In General Physics with a view to helping students overcome those difficulties Tap chi Giao due so (ki 2.9/2011) ... under the trend of International Integration Day hoc phat hien Thiet ke tai lieu (Tiep theo trang 45) (Tiep theo trang 47) cdc nhdm xet cde trudng hgp gdc A (hodc B hogc C) Id to hogc nhgn, sou... nhdn thirc, quo dd HS ty gidi quyet dugc vdn d l Viec phd''i hgp hoi hinh thtic DH ndy cung cd the theo mdt quy trinh, md sy tham gio cija DHTN duge td chtic chf d khdu G Q V D , hodc eung cd, nghien... mat ddy vd chiiu eao cua Ididi Idng ty dd (Hinh hgc 12 ndng cao, \r 27) Bude 1: Ldm viec ehung theo Idp GV duo tinh hudng ggi vd''n d l , nhdm giup cdc em PH dinh If cdn neu: + Hdy ve khdi Idng

Ngày đăng: 18/11/2022, 19:25

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w