DAY HOC KHAM PHA CONG THDC TINH KHOANG CACH Tif MOT DIEM JIEN MOT MAT PHANG (HINH HOC 12| HANG SUY LOAN TlTONG TO ThS BUI P H D O N G UYEN" Ngay nay, phuong phap (PP) day hpe kham pha(DHKP)vaphepsuy l[.]
DAY HOC KHAM PHA CONG THDC TINH KHOANG CACH Tif MOT DIEM JIEN MOT MAT PHANG (HINH HOC 12| HANG SUY LOAN TlTONG TO ThS N gay nay, phuong phap (PP) day hpe kham pha(DHKP)vaphepsuy luan tuong ty'{SLTT) dugc van dung nhieu day hgc (DH)toan Hon niia, neu giao vien (G V) biet ket hpp hai yeu to vao DH thi khong nhiing giup hgc sinh (HS) on tap dupc kien thirc cu ma tao co hpi cho cac em xay dyng kien thdc mdi Mo hinh DH tuong tutdnq quat (GMAT) cho phep ngudi hpc su'dyng SLTT de kham pha kien thdc mdi mgt each hieu qua Trong bai viet nay, chiing toi van dyng mo hinh GMAT vao DH cong thirc tinh khoang each tdmgtdiem den mpt mat phing thong qua mgt thuc nghiem su pham Quan niem veDHKP, SLTT v a m d i quan he giua Chung 1) Ouan niem veDHKP DHKP li mgt PPDH khuyen khich HS dua ciu hoi vi tutim cau tra Idi, hay rut nhdng nguyen tac tdnhdng kinh nghiem thucfiSn TrongDHKP, noi dung DH khong dugc gidi thieu trudc mi dugc HS tukham phi nhim tao cahgi cho cac em tham gia tich cue vao qua trinh day hoc (1; 24-26) DHKP CO ba dac diem: HS khao sat va giai quyet van de de hinh thanh, khai quat hoa kien thii'c; HS dupe thu hilt vao cac hoatdpng hpe tap; khuyen khich HScosulienketgidakien thuc mpi va kien thde cu Khi su dung PPDHKP, co the giiip HS phat trien tu vi doi hoi ngudi hpc phai danh gia, phan doan, phan tich, tong hop, Ben canh do, HS hpc dupc each kham pha tri thuc mdi va phat trien tri nhP thong qua hoat dgng huy dpng kien thii'c da c6; ti) do, giup HS hieu bai nhanh va khic sau dupc kien thde 2) Quan niem veSLTT Danh tir "tuong td' co nguon gdc tir "ava).0Yia", mpt tir toan hpc cua Hi Lap.Tunayc6 nghTa l a s u b l n g cua haitiso' Vl d[/.'3:4::9:12,tii'clahehais63va4tuongtuvPihehai s d v a ( ; 81-82) BUI P H D O N G UYEN" noi bat len a su giong dvai khia canh thich hgp" (3; 163-165) Vat lam eo sP eho phep tuong tu (ddi tupng de so sanh), dUPe goi la nguon; vat dupc giai thieh nhd su'dyng phep tupngtu gpi la dich Trong DH toan, mue tieu eua viec sir dung phep tuong tula ehuyen nhdng tu tudng td kien thirc nguon kien thde dich Ngoai ra, SLTT cocac irng dyng: xay dung gia thuyet, phat hien va khac phye sai lam eho HS; HS sudyng phep luong tu vao giai bai tap (BT)toan 3) Md'i quan he giua DHKP viSLTT.TrongDH toan, GV co the sd dyng phep SLTT de kham pha kien thuc mdi, nghTa la sddung SLTT theo thugc tinh hoae theo quan he gida cac ddi tuong de dua gia thuyet, sau d6 tien hanh chdng minh hay bac bo Mpt nhung mo hinh DH tuong tu phd bien la m6 hinh giang day tuong tutong quat (The GeneralModel ot Analogy Teaching - GPJIAT) dupc de xuait he'l Hassan Hussein Zeitoun nam 1984 Mo hinh la mpt mo hinh tieu bieu bdi n6 dudng nhu la suke't hpp gida cac y tudng cua cae mo hinh hien co Mo hinh GMA T gom ba giai doan: giai doan tie'p nhan, giai doan tuang ticva giai doan xac nhan (4; 164) Theo chung toi, cac giai doan eo thedupe ey the qua sP dosau: Hinh Sa cac giai doan eda mo f)inh Gh/IAT vol kicn thuc dich 'rm va cao kisnthu •GVdira ni"S • HS Ihp Ihuc nguo \r quan d i H S Ihao luan G V u Ihe dira inmgdlnthoHS :h diinu SLTT de lien itn thjcdich Tudo, kliam ptia roi ^ > S i i dung SLTT de DHKP djnh li ve khoang each tiimot dian de'n mot mat phang (Hinh hoc 12) flinh li khoang each tOf mot diem den mat phlng dugc SGK Hinh hoc 12trinh bay bai: Phuang SL TT li phep suy luan cin cd vao mgt sg thugc tinh gidng nha u cua hai dgi tugng derut ke't luan ve nhdng thugc tinh gidng khac cua hai ddi tugng dg (2; 87-88) SLTT dugc dinh nghTa nhula "su so sinh gida nhimg vit noi chung khac nhung ' Khoa Sir phaiD, Inrairg Dai hoc Can [ Tap chi Giao dye so 338 7ho cua HS vekien Ihu nKuon Tho Oii2-7/2014) trinh mitphing, sau phan phuong trinh tdng quat cua mat phlng Day la mpt nhiing cong thdc dupe su dung nhieu vao qua trinh giai toan chuong: Phuang phip tga khong gian Dudi day, chiing toi de xuat mot hudng DHKP cong^thuc tinh khoang each td mot diem den mot mat phang bang mo hinh GMAT: 3.ThiJcnghiem s u p h a m 6a>«i]fn dupc each giai BT va tinh dupc khoang each Dudi day la ghi nhan qua trinh thao luan cua nhom 7: HS An: Khoang each hinh nhu tuong tu voi cong thdc tinh khoang each td mpt diem den mgt duong thang Do c6 them phan z nua nen c6ng thdcc6thela: < / ( w , ( « ) ) = l ^ ^ ; ^ i ^ ; ^ l ^ HS An: Ggi M' la hinh chieu cua M len (a) Vay, khoang each td M den («) la dp dai MM' va each tinh |ArM| cung se tuong tucach chiing minh khoang each td mpt diem den dudng thang matphingdo (hing a m ' HS Khanh: Ta co M-M=knMa nua la xong |BT1 sau Tiotie lifl6Aff g T7n7 wa s cung phupng: \n\ = ^A' + B'+c\ plWu>a^;'^ nen chi can tinh k M ' e ( a ) nen: Ax'+By'+Cz'+D = >A(.x„-liA) + B{y„-kB) + C{z„-kC) + D = \J + By„+C:., + D + fl-+r' HS An: Tu do, tinh dupc khoang each: HSKhanh:* = - -Ir " i(^)»2j 2r-2.0 "* p"-«-«-13-l -Li,Af(ClO-l)E(/J) ,.\„)liailt6^ illlaUmi^''W ton _|0.2ll-2(-l).N| , _\Ax„ + By„ + Cz„ + D\ ylA' + B'+C'|Ax„ + By„+Cz, + D| HS Khanh:Vay: d(M.(a)) = ^ ", / " ' Chung toi da tien hanh thuc nghiem supham d lop 12A8, Tnj'dng THPT Chau Van Liem, TP Can ThP (ngay 15/3/2013) Ldp 12A8 gom 45 HSva dupc chia 15 nhom Sau tiet day, chung toi ghi nhan duoc mptsdketquasau: Trong giaidoan tie'p nhin, HS nhic lai dung cong thdc tinh khoang each td mpt diem den mpt dudng thang da hgc dIdp 10; nhien, nhieu em khong nhd each chting minh cong thdc Nguyen nhan cothe la HS chl van dyng cong thdc vao bai tap, it su dyng den each chung minh cong thuc nen nhanh quen.KhidupcGVnh§clai,HS da nhd lai each ehdng minh.Dieu tao dieu kien thuan lpi eho HS xay dung cong thdc tinh khoang each td mpt diem den mptmatphing dg'iaidoan tuang tie, G V den tdng nhom theo doi quatrinh cac nhom thao luan.9a so cae nhom dua (ki2-7/2014) \ V^' + B'*C- \ Qua phan thao luan cua cic nhom, chung toi nhan thay nhd su hgp tae, cac em da phan tich BT va dua duoc hudng giai Nhdng y tudng giai BT dupc lien he vdi each chdng minh cong thuc tinh khoang each td mpt diem den dudng thang mat phang day, HS datu luc xay dung dupc eong thirc mcfl thong qua viec sudyng phep SLTT dgiai doan xac nhan, eae nhom da phat bieu dugc eong thuc tinh khoang each tu mgt diem den mgt mat phing.GV khang dmh ket qua va phat bleu dinh li HS d i dang ap dyng cong thdc vao cae vi dy Oieu chiing to HS da nam vung e6ng thii'c va biet van dyng vao giai bai tap Nhuvay, bang each sudyng phep SLTT, HS dlop thyc nghiem on tap lai kien thuc vec6ng thiic tinh khoang each tdmptdiem den dudng th^ng Tuc6ng thuc nay, HS kham phacong thifcmpituong ti/nhutrong khong •Tap chi Giao dye so 338 | 55 gian Qua 66, giup HS kh6ng nhung xay dyng duge moiquan he giua kien thiic cu va kien thdc mcfl ma ren luyen cho cac em khanang sang tao Vivay, DHKP cong thiic tinh khoang each tii mot die'm den mpt mat ph§ng thong qua phep SLTT la hoan toan kha thi {4} Mana Salih A Proposed Model of Self-Generated Analogical Reasoning for the Concept of Translation, Joumal of Scienee and IWalhemmalic Educalion in Southeast Asia Vol 31 No 164-177 Faculty of Science & Technology, Sultan Idris University of Educalion Malaysia, 2008 PPDHKP mang lai nhieu loi ich doi vdi HS boi n6 giup cac em phat tnen tu duy, tri nho va tao duoc moi lien he giua kien thdc mdi vdi kien thiic cu Bac biet, DHKPb§ngSLTTdaehdng minh dupc hieu qua cua no qua trinh hpc tap, kham pha tri thiic mdi ciia HS Vivay, viec nghien cifu, phattrien vavan dyng phuong phap nayvao qua trinh DH laeanthiet.Q Tai lieu t h a m Ithuo Tran Van Hao {tOng chu bien) Hinh hoc 12 NXB Giaoduc VietNam H.2010 {]) Nguyen Phu Lflc Gido tnnh Xii Im&ng day hoe khdng truyin ihd'ng Truiyng Dai hoc Can Tha, 2010 (2) Hoang Chung L o g k hpc thiing NXB Gido ducH 1994 (3) Nirah Halivah Teaching for effective iearning in higher education Ktuwer Acadeniie Publishers The Nelherland.s 2000 Sir dung hinh hoc cao cap Thiet 1(6 tiettra bai (Tiep Iheo trang 50) (Tiep theo trang 46) Tai liSu tham Ichao I Dir an ViCl - Bi Day va hpc tich circ, mpt so phuong p h a p va lii thuat day hpc NXB Dai hoe supham, H, 2010 Nguyfin Thiinh Thi Chuyen de btii d u ^ n g giao vien trung hpc thong Soc Trang, 2011 Nguyen H6ng Nam 'Thia't k^ cau hoi day hoc Van - M6t thir thach vai giao viCn" Tap chi Gido due, %6 147,2006 SUMMARY In the current schools, paying for student tests is not enough attention The implementation of this class a perfunctory way the process of inconsistency has led many students miss the opportunity to fix weaknesses, strengths, and promote the process of writing Posts oriented design into a post office hours pay discourse to promote the highest efficiency of this class SUMMARY Currently, tenching by discovery and analogy are applied a lot in leaching maths Moreover If teachers combine these elements into teachmg they not only review the old knowledge but also help students to build the new knowledge easily The General Model of Analogy Teaching (GMAT) is used to discover the new knowledge effectively In this article, we applied the GMAT model m teaching the formula of calculating the distance from a point to a plane through an pedagogical experiment _ ldi giai tren ta thay, cac cap diem ( ' ; M), {N'; R) va {S'\ P) lan lugt nam tren cac ducftig trung tuyen eua A/1'S'C'nen anh cua chiing qua anh xa afin / ' la cac cap diem {0; l\4), (A/; fl), (S; P) ciJng n^m tren cac dudng trung tuyen eua AABC vi phep bien doi afin bao toan cac dudng tmng tuyen Day ehinh la co sd cho viec si) dyng S r d e tim Idi giai cho BT1 Trong qua trinh day hpc, neu GV thudng xuyen khai thae cae kien thdc cua HHCC nhim soisang cac kien thde cua HHSC sectiiipSV hieu dupc mpt each ehinh xac, hieu diing ban chat eiing nhu nam dupc cpi nguon cac kien thde eua HHSC; tudo, SV thay dUPc mdi quan he giua HHCCvdiHHSC.Q Tai lieu tham khao van Nhu Cuong - Ta Man Hinh hpc Afin va hinh hpc Euclid NXB D(ii hoc quoc gia Hd Noi, 1998 Trdn Viet Circ>ng - Nguyin Danh Nam Giao trinh Hinh hpc so-cSip NXB Gidodite VietNam, 2013 Dito Tam Giao trinh Hinh hoc so" cap NXB Dgi hpc suphgm, H 2004 Ng6 Viet Trung Giao trinh Dai so tuyen ti'nh NXB Dai hpc qud'c gia Hd Npi 2002 SUMMARY This paper presents some ideas of using advanced geometry in supporting students learning mathematics From advanced point of view, students would gel insight into some difficult problems in elementary geometry and make it clear the relationship between advanced geometry and elementary geometry Tap chi Gido due so 338 (ki - 7/2014)