()>ifl dung conp nghe thdng tin AP DUNG C 6 N G NGHE TIN HOC TRONG CONG TAC GIANG DAY MON TOAN KINH TE TAI TRtTOfNG DAI HQC LAM NGHIEP Vu KhSc Bay TS Truong Bgi hgc Ldm nghidp T6M TAT L ^ trinh tr€n m[.]
()>ifl dung conp nghe thdng tin AP DUNG C N G NGHE TIN HOC TRONG CONG TAC GIANG DAY MON TOAN KINH TE TAI TRtTOfNG DAI HQC LAM NGHIEP Vu KhSc Bay TS Truong Bgi hgc Ldm nghidp T6M TAT L ^ trinh tr€n mdi trucmg Viual Basic; dya vdo cdc diu$ttodnDon hinh dl giai b ^ t o ^ Quy bo£K;h taykn tmh v& tfau^t toan phSn phoi dltimeye tilu ting chi phi ciJa b ^ t o ^ van tdi Ap dung cong nghf Adng tin, tdc gid tk > (Tdii Xk thi dugc thay bdng -1^) - NIU cd mOt biln Xk tdy ^ thi d^t Xk = Xki Xk2 v d i Xki > v a Xk2 > -Nlu cdbk < thi ta doi diu 2vlcda rdng budc (khi diu bat ddng thdc bi dii) - Neu vd trdi < ve phdi ttd ta cdng vdo vd trdi m0t bien phu (bien phu ndy > 0) de cd dugc rdng budc ddng thdc - Neu ve trdi > vephai thi ta tru vdovd trdi mdt biln ph\i ( biln phu > 0) de cd dugc rang budc ddng thdc Bai todn QHTT d ^ g tdng qudt vd d?ng chinh tdc tuong dng diu ciing cd nghiem ho|,c cung vd nghi?m Td nghifm cda bdi todn dang chlnh tdc ta dl ddng cd dugc nghifm cua bai todn QHTT tong qudt, ddng thdi dd gid t i cda hai hdm myctieula nhu Td nhan xet trdn ta thay chi cdn gidi dugc bdi todn QHTT d dgng chinh tdc Sd d\mg d day thudt todn don hinh dl gidi Th\rc chit cda phuang phdp don hinh Id tim dugc tren m5i phuang trinh rang buOc mdt biln cd l§p (la bien chi xuat hifn d mdt phuong trinh vdi hf so bdng bdi todn da d dang chinh tdc), nlu trdn phuong trinh rdng bu0c khdng cd biln cd lap nao thi ta thdm vdo phuong trinh mgt biln gia va bai toan trd bditodnM, ham muc tieu cd them bidn gid vdi he sl Id M (d ddy M Id sl duong ldn y) Sffdo thu^ gidi bdi todn Quy hogch tityin tinh theo phuong phdp Don hinh : Bit d ^ Nhip cac gia trj Cj, a^ bi ^ Kiem tra dua v£ chmh tic, bam muc tiSu ^> mm, cdcbizOgtajdgngd^t I n phy * Kiem tra cdc bi£a co ^p cdc phuong tiinh rang buoc Idi&ig v l ddu => tu d^ng d | t an gid Khraig Xet cac A, > X c t c i c c § t ^ voi A^>Ovd Xg V i Nghi^ J V6iigM§inL X Tiin Max A J = A^ (Be xdc ^ n h cot quay: k ) "1= Tim e = i i i i i i A = A ^ * * Oft ^ (^ xic ^ n h hang quay ; r ) _L Tioh = - ^ vi bl.= M 6i'= bi - TAP CHi KHOA HQC VA C N G NGHf LAM NGHIfiP S6 - 2013 139 Ohg dung cdng nghe thong tin 23 P h m m g phap giai bai todn van tai Bdi toan vdn tai Aigc frfiat b i l u : U m g ^ tq cac phdn td cda ma trdn X = ( ) ^ c '^nsaodio: voi cac rang bu9C : < r, i=l t'a^Pi J=l tiong dd j = I*n ^m;Xii > r , - > ; i»- a Ddy Id bdi todn QHTT nhung tinh chit dac bift cua nd ndn ngudi ta ^ tim mdt each g^di khdc hieu qua hem: phuong p h ^ phdn phdi mgt bai todn cd kich co nhd thi vifc nhin quan sat va tim kiem chu trinh khdng khd, nhimg ndu bai toan cd kich ca ldn thi vifc thuc hifn theo cdch tren khdng don gidiL Vi v|iy vifc dua dugc mft thudt todn dp dung tin hgc dd cd thi tim kilm chu trinh ciia bdi todn vdn tdi mdt cdch ting qudt la mgt thdnh cdng ddng kd Bdi todn v ^ tdi dugc gidi vdi hai dang: - Bai toan van tai dang can bdng thu - phat - B d i t o a n \ ^ t a i d d ^ n g k h m g cdnMngthu—phat Trong bdi todn vdn tdi dd gidi quyet trgn ven cac van d l lien quan: + I i m phuong dn diu theo phuong phap : uu tidn cudc phi nho nhlt Trong tiiu|it gidi bdi todn van tai cd mgt thao tdc: tim chu trinh trdn t|ip d chpn vdi d gdc la d cd cudc phi am nhd n h l t N l u ddi vdi + Quy khdng d chgn + Kiem tra tinh tdi uu cua phuong an + Tun kidm chu trinh StrM thudt gidi phmmg pk^ phdn phii 191 dgng cho Bdi todn vgn tdi X L ^ ban^ ^ cdc Q Tim phuong an ^ u ( bdng pp uu tiai cudc phi nhd nhdt) QityOdchon * K i ^ trad bai X NaimgiCg > Sai n) Tim d(r,s): c „ = mine b) Xac ^ ( ^ trinh V J Dung C6p.antraini I Ket thuc c)Tmie= miax d) Di&j clnah dc c6 jAuong an mdi m K E T QUA NGHIEN CUtI 3.1 Tinh toan va ket qua giai b i i t o i n QHTT theo p h m m g p h a p ao X3 ã* -^ ' ' -" UN 19 10 a> ã ^ ã ^ 5oôrfl*uB[tflTằp| VfphU Mu>-*.' • * • ^ FUngDuOcS IM ^ ^ •"* ' ' ^ ' * L ^ i ^''°** 1 COoW: 10 f)4i«ngC£t poT -XI + *ja XI 2.X1 +X2 -X2 -zjo < e + 2X3 • 2JC3 > = B XI >0 ; X2>0 ; X3>0 B u a v « b&j lodn Omtt tSc H i m myc 1»u => V« phai r i n g b u ^ k M n g v « d & j > (=) , cftc b i w i > {=) FP0= -XI -XI XI 2JC1 - 2JC2 • 4JC2 *X2 ••X3 - 2J(3 + X4 • 2JC3 + 2JC3 -X2 MN -xs e e = D i e n gidi t i h i g budc CtiHThiA H4sd| B;£n comp i ° ° i/i '6 " -3/10 38/5 0 -11/10 1 1 " 1 "1 ' 1 ' 3/S " ' ° " 1 1 1 3/4 ' '0 t2r5 M xJ " 0 '' " ° ' " -' " " iii^ * il2 • 11/4 " 1 ^ hgLl2=(-3/*)-ti9_10 + h g L | " ** haJI=(V2).hQL.SthQL.6 -* ' "^ 1x-2S *1 ' ^ -' t ] " " ' * tsi^ ' -' -1/2 1 ' ^ 1 = -' = J (S(Jj ' -1/2 ' " J/4 R ' " -' ' 1 ,0 R • B.CISP| li9_1 •US -?/l4 -9/10 Ket qu4 tinh: NghiSm ba toan chinh tSc: X = (14/5,12/5,2/5,0,0) Nghiem bai toan: X + (14/5,12/5, 2/5) vdi f-Max = 36/5 T ^ c m KHOA HQC VA CONG NGHf LAM NGHIEP S6 - 2013 °1 Ifng dung cong nghi thdng tin 3.2 Tinh toan va kit qua giai bai toin v$n tii (theo phmmg phip phin ph6i) wmmmmmmmmmmmmmmmmim BAI T O A N V A N T A I ""™ ' - «l PHAT m PI leai^ a.ami j ™, I m = = 10 > < J / lU ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B ^^^^^^^^^^^^^^^1 ^^ i?/e« gmi tdmg bir&c tinh todn Nhap 30 (T.I) 55 (P.1) 10 25 (P.2) 70 (P.3) S Tim P.in diu 30 (T.1) 55 T (P.1) 10 25 (P.2) 70 30 C (P.3) S Quy chon 55 (P.l) 25 (P.2) 70 (P.3) S Tinh lai cuoc 55 (P.I) 25 (P.2) 70 CP.3) S 142 30 (T.l) C 10 45 45 20 25 30 Chan 30 C -9 (T.l) C G& -i C 35 _(T.3) 45 20 40 13 (T.2) C C 35 fr.3) 35 C (T.2) C C 40 (T.3) -4 (T.2) C C 40 (T.4) R -1 C -8 (T.4) c 35 35 13 -7 (T.3) C 40 c 40 R 40 13 35 35 (T.4) R 40 45 20 Le 25 Chin (T.4) 25 30 (T.2) -2 C T ^ CHi KHOA HQC VA C N G NGHE LAM NGHIfP SO - 2013 R Ifng dung cdng nghi thong tin Tim P.Sn m6i 30 45 20 (T.l) 55 C 0 (P.l) 35 35 (T.2) 25 (T.3) -2 C -4 C 30 R C 25 70 (T.4) (P.2) (P.3) 40 c 40 C 40 (T.4) R -2 C 0 S (Juy chon 30 (T.l) 55 (P.l) 25 (P.2) C -4 70 (P.3) 30 (T.2) 25 c C (T.l) (T.3) c , 40 -4 -4 30 35 35 C S Tinh lai cuoc 55 (P.l) 45 20 45 20 (T.2) 25 C Chan C 35 35 (T.3) 40 C (P.2) 70 Le C c G«c 30 (P.3) Chan -2 Tim P.dn m6i 55 (P.l) 30 (T.l) 25 (P.2) 25 70 (P.3) 25 (T.4) R 40 C S 45 20 C C (T.2) C 35 35 25 (T.3) C 40 R C -2 (T.4) 40 C 40 (T.4) R -2 S Quy chon 55 (P.l) 25 (P.2) 70 (P.3) 30 (T.l) (T.2) C 25 C 0 S Tinh lai cuoc 55 (P.l) 25 (P.2) 70 (P.3) C 45 20 25 30 (T.l) 45 20 C c CT.2) C 25 (T.3) C 40 C -2 2 2 25 35 35 35 35 (T.3) C 0 40 (T.4) 2 40 • 0 c C C 0- S T ^ e r a KHOA HOC VA C N G NGHE L A M NGHIfP SO - 2013 R Ifng dung cong nghe thong tin Sau tinh Iji cuoc : N& tat ca cac cuoc a cac o deu ^s > • • ta nhan v- dugc t„„„t.„™,„ plu —, ^0 tin phucmg an t6i uu ciia bai toan van tai Nghidm cua bai toan la mpt bing cho cac gii tri cua Xij > vi ^^ _A '^ VI K T L U A N Ap dung c6ng nghe tin hpc cho mpt san phSm la mpt phin mSm duoc sir dyng toan, chucmg trinh se cho ket qua Unh toanvdi ^ ^ kSt xuit thong c tin diyj du cac buoc , - Ap dtmg cho cong tac giang day not dung mon hoc Toan kinh te T A I L I ^ U THAM KHAO Doan ChSu Ung (1998), Ly thuyit quy hogch tuyin tinh va ly th^it thf him hgn, NXB Gito due, H4 noi congtacgiangdaymonhocToankinht^ Kha nang ap dung san phSm : - Voi cac thong tin dii cho tijmg dang bai ' ' J I T # / ^ J " "