1. Trang chủ
  2. » Tất cả

Sử dụng bảng GSP và phương pháp ROC để phân tích và lựa chọn câu hỏi trắc nghiệm khách quan

7 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 288,46 KB

Nội dung

TRUdNG DAI HCPC DONG THAP Tap chf Khoa hoc sg 24(02 2017) SU" DUNG BANG GSP VA PHlTONG PHAP ROC DE PHAN liCH VA LITA CHON • CAU HOI TRAC NGHIEM KHACH QUAN • Nguyen PhUdc Hai''''*'''' Tom t^t Bdi viit di xud[.]

TRUdNG DAI HCPC DONG THAP Tap chf Khoa hoc sg 24(02-2017) SU" DUNG BANG GSP VA PHlTONG PHAP ROC DE PHAN liCH VA LITA CHON CAU HOI TRAC NGHIEM KHACH QUAN • • Nguyen PhUdc Hai'*' Tom t^t Bdi viit di xudt phuang phdp phdn tich vd lua chgn cdu hdi trdc nghiem khdch quan dua trin bdng GSP vd phuang phdp ROC v&i trudng hgp cd mdu l&n Trong nghien cuu nay, phuang phdp M xudt da duac so sdnh v&i ly thuyit img ddp cdu hoi Ket qud nghien cieu da cho thay phuang phdp ndy khdng chi cd thi sie dung phdn tich vd lua chgn cdu hdi trdc nghiem Ididch quan, md cdn cd the cdi thiin chdt lugng vd hieu qud cua viic thiit ki cdu hdi di xdy dimg ngdn hdng cdu hdi trac nghiem khdch quan Tie Idida: bdng GSP, phuang phdp ROC, ly thuyit dng ddp edu hoi, cdu hdi trdc nghiem Ididch quan, ngdn hdng cdu hdi Bat van de nghigm phai bao quat duoc kiai tinic cua mon fapc Nham ihuc hien Nghi quyit Hpi nghi ldn thu can kiim tra 8, Ban C h ^ hanh Trung uong khda XI (Nghi Hien n ^ , viec su dyng ngan hdng cau hdi quyit sd 29-NQ/TW) vdi npi dung "Ddi mdi can va thi TNKQ dang dupc cac trudng khuyen ban, todn di^n giao dye vd ddo tao, ^ ung yeu cau khich, t i ^ nhien da so cdc cau hdi TNKQ cdng n ^ ! ^ hda-hien ^ hda diiu kien kinh ngudi day ty bidn sogn cd tiie chua theo diing te,tfa} trudng djnh hudng xa hpi chu nglti'a vd hdi q i ^ trinh, dac biet cdc cau hdi trudc va sau n h ^ qudc te", rapt nhiing npi dung quan viit sfl dyng tich, pfaan danh vao gia n ^ thudng se id tdikhdng lipu ratdupe can phan fltiet gdp trpng de nang cao chat lupng giao due cliinfa la viec ndn cac d ichat tfai faien cfaua totciia va qua pfadn trinh ldn cdi titien lupngnay vd lahieu qua ddi radi phuong pfaf^i d ^ fapc, ttong cd vipc ^ i vi?c cfadt iupng cfaua cao Kit qud ngfaien ciiu ciia bdi bign sogn vd tfaiet ke de Ifai TNKQ, ddng mdi ve phuang plidp kiim tta, danh gia kit qud hpc thdi gdp phdn ndng cao ky nang cua gido vidn tap ctia ngudi hpc d ^ ung yeu cdu ddi mdi can tiong viec titiit ke cdu hdi TNKQ dung d i x % ban, todn fflpn gido dye va dao tgo Cd ihi ndi viec dyng ngdn hdng cdu hdi TNKQ Tiip theo la kiem tta, gidIdla khdu boat dpng Ihi Ihieu cua phdn gidi thigu so lupc ve bang GSP, phuong trpng, bdi^inh vi nd cudi khdng cung khdng nhimg qua dgyttavacay fapc tta, t%> ddnhciia gjaqua kittrinh qud phdp ROC, va ly tiiityit ung ddp cau hdi Nam ddnfatrinh gid dp kitKiem qud fapc hpc t ^ cua ngudi hpc la mpt van de fait siic quan day va hpc ma cdn cd tdc dyng dieu tiet ttd lgi hit 2010, Nagai da de xuat bdng GSP dya tten sy kef sue manh me ddi vdi qua trinh dao tao Thdng qua hpp gifla phdn tich quan hg xam vdi bang S-P kiem tta, danfa gia trinh dp nhan thiic, 1^ nang, ky Bdng GSP cung cdp thdng tin v i he sd cfaii f ciia xdo cua ngudi hpc se phdt hien nhiing sai sdt, fapc sinh va hg so chu y cua cau hdi, nd cdn tinh nhiing id hdng ve iden tfauc di tir giup ngudi toan cdc so lieu rdi rac vd dinh lupng cac nhan td d£^ vd ngudi fapc ty ffliu cfainfa hogt ddng dgy va thdng qua sap xip trinfa ty di gidi quyit cdc mdi faoat ^ n g fapc Hudng toi yen can kiim tra, ddnh lien hg phuc t ^ giua cac nfaan td Ngodi ra, nd gia rapt each cdng bang, khadi quan ket qua hpc cdn su dung khdng chi de phdn tich, chan dodn tap cua ngudi hpc, de doi mdi phuong p h ^ kiim va danh gia frong fapc tap, md cdn gdp phdn nang fra danh gid ngudi ta tfaudng su dyng hinh ihuc flu cao hieu qud ttong gjdng dgy [8] Trong nfaung ttdc nghipm khdch quan (TNK()) Tren tfayc te, tii nam gdn day, bang GSP da dupc sir dyng nhieu tiin hdnh soan tfado cdu fadi ttdc ngfaipm cho ttong Itnh vuc giao dye [6], [8] Phuong phdp su den su dung dupc cau hdi ttdc n ^ e m vdo de dyng dudng cong ROC Receiver Operatmg thi thi cdc cau hdi ttdc nghiem phdi dupc ^ n h gid Characteristic) cd ngudn gdc tii lmh vyc qudn sy, d nhiiu muc dp kfaac va mdi de flu ttae nd dupc iing dyng ttong vigc phdt hien tdu ctia dich tten man hinh ladar ttong tiii citiin tiiu *' Trudng Cao d5ng Su pham Kien Giar^ Phuong pfa^ ROC da dupc img dyng cfadn dodn 11 TR0C(NG DAI HOC DONG THAP va tien Imprag y hoc rat cfing [5] No' cung duoc su dung ttong iinh vuc giao dvic de phan tich, chan doan va danh gia qud tiinh day hoc [9] Ly thuyet ung dap cau h5i (Item Response Theory - TRT) Ik mot ly thuyet c i a khoa hoc ve luong ttong giao dye, doi tu ni>a sau cia the ky XX va phat trien manh me cho den Ly thuyet ung dap cau h6i xay dung cac mo hinh toan de xu ly dir lieu diia fren viec nghien cuu moi cap tuong tac giiia "Hpc sinh (HS) - CSu hoi" klii trien khai m6t TNKQ Moi HS dung truac mot cau hoi se iing dap nhu the nao, dieu phu thuoc vao nang luc tiem an ciia HS va cac d|c tnmg ciia cau h6i [10] Hien cac ly thuyet ve bang GSP, phuang phap ROC va ly thuyet ung dap cau hoi chua duoc su dyng bien d Viet Nam, dac biet la dung de phan tich, chan doan va danh gia ttong giao dye Nam 2015, phan tich va lua chpn cau hoi TNKQ dya fren bang S-P, phan tich quan he xam va duong cong ROC da duoc de xuat voi co mlu nh6 [3] Tuy nhien, ca may se co anh huong lon den chinh xac ciia uac luong thong k6 Vi vay, ttong bai viet nay, nguoi nghien ciru sii dyng kit hop btog GSP va phuang phap ROC dl phan tich va lya chon cau h6i TNKQ voi co mSu Ion va so sanh vol kit qua cua Iy thuylt fag dap cSu h6i Ly thuylt fag dap cau hoi la ly thuyet da duoc nhiiu nuac fren thi giai sii dung bien de ph&i tich va Iua chon cau hoi TNKQ [10] Hon nOa, nguoi nghien cuu su dung phan mim MATLAB dl hoan tiuen hop cong cu MATLAB cho phan tich va lua chon cau hoi TNKQ dua fren bang GSP va phuong phap ROC Hop cong cy MATLAB giiip cho qua ttinh tinh toan de dang, nhanh chong, chinh xac, hiin tili ket qua va Mnh anh fren giao dien dh hoa nguoi dung mot each true quan smh dpng Cff Sff ly thuyet va phinmg phap nghien cuu 2.1 Bang GSP Bang GSP da duoc Masatake Nagai de xuat frong nam 2010 dya fren sy kit hpp giua phan ttch quan he xam va bang S-P Bang S-P dupc dl xuat b6i Takahiro Sato vao nam 1969 No thucmg dirng dl sjp xlp, phan tich va phan Ioai ket qud hoc tap cua HS va can hoi frSc nghiem dua fren he so chii y cua HS (C5) va he sl chii y cuacayh6i(CP)[8] 12 Tap chi Khoa hoc so 24 (02-2017) Trong bang GSP a bang 1, la ma frSn co m hang va n cot, ttong y, = niu HS frd loi dfag cau hoi va ;'5 = neu HS tta loi sai cau hdi So HS la 5,,7 = l,2, ,m; so cau hoi la P,-,y = l , , - , « He so chu y c i a HS (CS) duoc tinh bang cong thfa sau: CS, J I.(yij)(y,,)-(yi.)(y) 7=1 -^ frong I.(y.j)-(yi.)(y) (1) He so chii y cua cau hoi (CP) dupc tinh nhu sau: Xb'y)(yi.)~(y.jXy) C/", = J _, frong M « m Bing Bing GSP \ > C S u hii HS \ ^ ^ SoHS S,,i = 1.2,-,m Ting so HS tri loli ddng CP GP XSngsS ciu hdi tra Icri dung Cao Xl,= \yij\mm J, Th^ So cau hoi P,.l=XX-.n Nhieu it Cf, GP, - cs as cs, GS - - - - Trong ngltien ciiu nay, phan tich quan h$ xdm da duoc su dung dua theo gid tri ldn nhat (Lager-flie-Better) de ldm vector fliara khdo ^^o [2] Dya tten dii lieu thd tii bdng S-P de thiit lap vector y^, vectoi y^ la gia tri ldn nhat d mdi cOt va y^ la sd lieu timg faang dya tten du lieu thd de so sanh vdi y^ yo = (yo(ilyoi2),-,yo(f^X-,yo(m)) (3) Tgp Chl Khoa lipc so 24 (02-2017) TRUCfNG BM HOC DONG T H A P yy=(y^(\Xh(2l-,y,{k),-,y,(m)) y2 = {y2(\),y2(2l-,y2{ki-,y,(m)) (4) y.=iy,i^ly.(.2X-^yXkX-,yXm)) yn={yMyA'2l-,y„(k),-,y„(.m)) i = l,2,-,n Sau kiu da tfaiet lfip dupc sd lieu phan tich titi tien hanh tinh toan miic dp quan fap xam Cdng Ifauc tinfa muc dp quan he xara da dupc dua tten ly luan co bdn v i kfaoang each Minkowski Miic dp quan he xdra cua HS va cau hdi ldn lupt dupc ki hieu Id GS, va GPj tuong ung vdi gjd tri Gamma ciia mdi HS vd radi cdu hdi Gia tn Gamma ve co bdn dupc tinh nfau sau [2]: Cach xdc djnh tt^ng tiiai duong tinfa vd am tinh ciia cau hdi nhu sau: Dua tten kit qud ttd loi dung sai cua HS va can cu vao tong so HS tta ldi dung cau hdi de xdc linfa ttgng thai ducmg tinh (IQ^ lueu la 1) vd am tuih (ky hieu Id 0) cua gia tri du bdo Sau can cu' vao gia tri thuc te de linh cac tt^g tfadi a, b,cvad cua cau hdi [3] Do nhay (Se) = a+b Do dac hieu (i^) = - +d Dien tich ben dudi dudng cong ^^^^^^_Se(l-Sp) _iSe + l)Sp (7) (8) (9) 2 Dudng cong ROC co trac tung la ti 16 duong tinh tfaat (do nfag^') va true faoanh Id ti le duong tinh gja (1 trir cho dp dac itieu) Cd hai ti le n ^ su dyng n „ (5) 7„ = r(y,(k),y,(k))-'^ m ^ L : ^ i _ ;=- 1,2,xdc sudt de tinh vd chung co gid tri dao dpng tit \:m.-&^ den Theo nhiiu nghien cim dipn tich ben dudi ttong do, AQ, Id tong khodng cdch sai so tuyet doi dudng cong ROC (A C/Q dupe xera la phan biet ^ t giiia y, voi y^ giiia hai trang thai duong tinh va am tinfa kfai v4C/C>0,7[5],[9] 2.3 Ly tiiuyet ung dap cau hdi ^0 = Ik -yAp = ( s iyoU)-y.U)ff (6) Phan mem BILOG-MG dya tten ly thuyet A|j^ vd A„jm tuong iing la gia tri lon nfaat ung dap cau hdi da dupc lat nfaieu nfad nghien ciiu tten thi gidi sii dyng de phan tich cau hdi vd gid tri itiid nfaat cua A^,-, ttong bdi viet TNKQ [7] Hien cd md hinh todn ngudi nghien cuu da sir dyng /> - d i tinh gid bien nhat ttong ly thuyet iing d ^ cau hdi: md fairfli tfaam so chi xet din dp khd cua cau fadi, tri Gamma md hinh tham so cd xet den dp phan biet cua 2.2 Phmmg phap ROC Phuong phap su dyng dudng cong ROC cau hdi, va md hinh tham so xet them miic dp tiling de ddnh gia cac ket qud cua rapt du dodn doan md cua HS ttd ldi cau hdi Tiong va ling dyng dau tien cua nd la cho viec ngfaien nghien ciru nay, rad hinh tham so dupc sii ciiu cac he thong nhan dien ttong viec phat hien dung de pfadn tich cdc can hdi TNKQ dya tten cdc tin lueu radio kfai cd sy hien dipn cua nhieu pfadn mem BILOG-MG Cdng tiiiic todn fapc cua vao tfaap nien 1940 [5] Tiong nghien ciiu nay, md fainfa ly tfai^et iing dap cau hdi cfao tfaam di xay dyng dudng cong ROC cac nha ngltien so nfau sau: cuu can phdi tinh todn dp nhay vd dp dac hieu ^ ( ^ ) = - + ^ -a(e-b) ^4=^ (10) ciia timg cdu hdi dua tten gia tri thyc te vd gia - tri du bao de xac dmh cdc ttang thai duong tinh vd dm tinh Bang Bang 2x2 cua phutrngphip ROC Gid tri thuc ti Duongtfnhthgt Am tinh that Gia tri dir bao Am tinh gid Duong tinh gii Tiong dd, la raiic dp nang luc, a la tham so ve dp phan biet, b la tfaam so ve dp khd vd c la tham so ve dp dodn md Cac tham so ndy duoc lua cfapn ttong cdc Idiodng sau; 0,5 < a < 2,0; -3 < ft < 3; and < c < 0,35 Cac gia tti ttong cdc khodng cua ba tham so tten da tfaudng dupc cdc nfaa nghien ciiu su dyng de phan tich vd lua chon cdu hdi TNKQ [1] Tap chf Khoa hpc so 24 (02-2017) TRUCJNG DAI HOC DONG THAP 2.4 Thi^t ke hop cong cu MATLAB De thuin tipn cfao vide tinh todn nhanh chdng va chinh xac cac phep tinh phiic t£^ nhieu nha nghien ciiu da sii dimg phan mem MATLAB di tiuet kerapthpp cdng cy MATLAB [3], [4], [6] Trong bai viit nay, ngudi nghien ciiu hoan titipn hop cdng cy MATLAB de phdntich,lya chpn cdu hdi TNKQ dua tt§n bang GSP vd phuong phdp ROC, chuong trinh xu ly dii lieu cua hop cdng cy MATLABttongnghien cuu dupe tdm tdt gom cd budc Qiinh 1): Buac Nhip du Heu Dii lipu IdraattanY dupc nhip vdo dudi dgng t|ptin*.csv hodc *.xls hole *.xlsx Biedc Kiera &nh dp tin c|y ctia du' lieu (he so Cronbacfa's Alpha) Buac Tinh t6ng sd cdu hdi trd ldi dung cho m§i HS vd tong so HSttdldi diing d moi cau hdi; tinh hd so cfau y CS va CP ciia HS vd cau fadi,tieptheo Id s ^ xep tfaeo gid trj CS vd CP tij nhd din ldn Thiit l|p vector >'o; tiep theo tinh tong khoang cdch sai so tiyet doi cua ra§i HS va moi cau hoi; tinh gia tri Gamma (GS vk GP) cii m§i HS va moi cdu hdi; sau sdp xip tfaeo gid tri Gamma tii ldn den nhd doi vdi GS va GP tiuet ke kit qud va hinh anh cho cac gia tii Gamma Bu&c Xdc dinh cac tt^g thdi duong tinh vd dm tinh; tinh cdc gid tri a, 6, c va d;tiiptheo, tinh dientichben dudi dudng cong ROC cua mdi cau hdi; sau fltiet ke kit qud vd itinh anh dudng cong ROC Bu&c Thiit ki Iuen thi cac kit qua vk hinfa dnh de hien tin tten giao dipn hpa ngudi dung Ngudi sii dyng cd tiie luu l^i kit qud duoi dgng t$p tin *.csv ho^c *.xls h o ^ *.xisx va hinh dnfa dudi dgng t|ptin*.JPG Bte&c Tiep tycfaodcthodt khdi chuong trinh Neu ngudi su: dyng n h ^ du^ lieu flu chuong trinh se tiep tyc vdfrdve budc 1, hoac thodt khdi cfauong trinh tiii chuong trinh se ddng lgi Phucmg phap ROC Tinh l6ng s6 HS va tong sd cSu hot Xac dtnh cac trang Ihdi duong tmh va Sm tinh Tinh cdc h? s6 chu y Tinh cic gia tn a,b.c\kd Tinh cAc gia trj GS,vkGPj Tinh di^n tich hen dudi &abag c«ig ROC (AUG) Thiet k^ k^t qui v hinh inh { Ket Ihiic ] ( Trdve J r J Hiiih LiiudS phan tich ciu hoi TNKQ to tren bing GSP vi phirong phip ROC Tap chf Khoa hpc s6 24 (02-2017) TRUONG DAI HOC DONG T H A P Ket qua nghien cuu va thao l u ^ 3.1 D u li^u thuc nghidm Dli lipu nghidn cuu la kit qua ttd ldi 25 cau hdi ttae nghipra Toan hpc ciia 813 HS ldp Du^ lieu va phan mem BILOG-MG sti dyng ttong nghien ciiu dupc 1%^ tii Vipn Thdng tin vd Do ludng Giao due, Trudng Dai hpc Su phgm Ddi Trung, Dai Loan (Graduate Institute of Educational Inforraation and Measurement, National Taichung University of Education, Taiwan) Tiudc hesi hanh pfaan tieh lya chpn cdu hdi trac ngiuem, ngudi ngltien ciiu ^ kiera tta dp tin c^y cua du !i$u tiidng qua hp so Cronbach's Alpha Hp so Cronbacfa's Alpfaa cua du lipu Id 0,813, hp so n ^ cho fliay dii lieu cd dp tin c ^ cao, phu hop de tiiyc hipn nghidn cuu 3.2 Ket qua nghien cuu Trong ngfaien cuu n ^ , md Itinh fliam so dua tten phan mem BILOG-MG da dupc sii dung d i phan tich 25 cau hdi TNKQ K i t qua phdn tich va lua chpn cau hdi dya ttdn If tiiiQ'et iing d ^ can hdi cho thay cau hdi 13, can hdi va cau hdi khdng dupc chdp nhan tibeo dieu ki^n cua ly thi^et ling dap cdu hdi (hinh va bdng 3) Bdi vi, cdu hdi 13 cd tham so dO phdn bipt la 0,28 (a); cau hdi cd tfaam so dp dodn md Id 0,50 (c); va cdu hdi cd tiiara so dO phan bidt (a) Id 0,39 va tfaam so dp dodn md la 0,38 (c) khdng dap ung diiu kien cua !y fliuyit ung d ^ can hdi [1] 'ô""-"ã** S :-5 :S ^ = ã ^,T iiss" : S jtrJ-rifpiffiw^aaaiiiai Tb-.lc •:H := : I EQiih Ket qua phaa tich 25 cSu hoi dua trIa phan mem BILOG-MG PHAN TICH VA LUA CHON CAU HOI TNKQ DUA Tl P VA PHUONG PHAP ROC l l i Alpha-_Eps4»- achBL kiang, Truong Cao dang Su pham IGen Giang Huih Giao dien hoa ngwo^ diiiig cho phdn tich vd lya chon 25 cdu hdi TNKQ 15 Tap chi Khoa hgc sg 24 (02-2017) I R O Q N G DAI HQC DONG THAP Tren giao di?n d6 hoa, ngucri dung oia hop cong cu MATLAB dung dl phan tich va lua chon can hoi TNKQ dua trSn bang^ GSP va phuong phap ROC (GSP-ROC), co the thay ket qua cac gia tri CP, Gamma vkAUC cua cac cau hoi va hinh Snh vl gia hi Gamma, cac duong cong ROC Clia cSu h6i qua tririi phan tich va lua chon can hoi TNKQ Theo ket qui phan tich va lua chon can h6i TNKQ dua tren bang GSP va phuong phap ROC (hinh va btag 3), neu chpn ngu8ng gia tri Epsihn bang 0,6 thi ket qua gi6ng vm ket qui cua phuang phap lua chon cau h6i dua theo ly thuyet ung dap can hoi, nghia la CO cau hdi khong duoc chap nhto (cau hoi 13, can h6i va cau hoi 2) Tuy nhien, neu chon nguong gia tri Epsilon bSng 0,7 thi se co 11 cau hoi khong duoc chap nhan nghien cuu Bang K^ qua phSn ti'ch 25 cSu hoi dya trfin BILOG-MG vi GSP-ROC Cau hoi 11 10 19 13 , 14 18 17 20 12 24 22 ' "i 16 S 21 23 IS 25 GSP-ROC CP Gamma AVC 1,00 0.28 0.79 0.21 0,76 0.46 0.75 0,70 0,65 0.76 0.27 0.76 0.32 0.64 -0,23 0,17 1,12 0,59 0.61 0^8 0.53 0.33 0.74 0,53 0,52 0,51 2,93 0,50 0.86 0.50 0,75 1.26 0.07 0.18 0.33 0.76 0,50 1,12 0,05 0,17 0.33 BILOG-MG c b a 1,24 -0,85 0.18 1,68 -0,50 0.10 0,72 -0.43 0,22 1,66 -0.17 0,20 o.n Kit qua Bgt Dqt Dgt Bgt Bgt Khong Kkdtlg.^ Dat Dqt Khdng 1,23 0.49 0.33 0.46 1,56 0.10 0.17 0.28 1.00 0.15 0.17 0.39 1.13 0.32 0,23 0.42 0,49 0.47 0,67 0,76 0.46 0.44 0,73 0,70 Bgt 1.37 0.72 0,33 1.54 0.49 0,24 0.40 0,86 0,38 0,15 0.44 0.40 0,66 Khong Bat 0.35 0.72 Bat 0^9 - 2,56 0,38 0.79 0,83 0,30 0,10 0.42 0,35 0.33 0,56 Khong 0.72 Bat 1,34 0,42 0,17 36 0,79 1,15 0.22 0.58 1,02 1.28 0.27 0.61 1,08 1.53 0,26 65 0,32 0,75 Bgt 0,20 0,65 Khdng 0,20 0,63 0,12 0,62 Khdng Khdng 1,95 0,07 0,69 Khdng 0,06 0,60 Khdttg 0,00 0,64 Khong 1.11 0,20 50 1,31 1.79 0,26 0.69 1,69 1.50 0,20 0.62 0.36 0,73 Bat Bgt "o" la tham so ve dp pfaan biet, "6" Id tham so ve khd, "c" la tham so v i dp dodn md 3.3 Thao luan Trong nghien cuu nay, pfauong phap de xuat da duoc so sdnfa vdi ly thuyet iing dap can hdi Ly thuyet ung d ^ cau hdi la mdt ly thi^et cua khoa hpc ve ludng giao due, ddi tu mia sau cua the ky XX vd phdt trien mgnh me cfao den Ly tfauyet da dupc nhieu nudc tren the gidi sii dyng ph6 bien va mang lai kit qud rat tich cue [10] Vi vay, ket qua phan tich va lua chpn cau hdi TNKQ cua phuong phap de xuat la pfau hpp va dang tin c|y d i dp dung cho viec xay dyng ngdn hdng cau fadi TNKQ Dira vdo bdng kit qud d bdng co die thay rdng he so CP cdng cao dii gja tri AUC cang diap va ngirpc 1^ Khi he so CP cdng cao vd gid tri AUC cang tfaap tfai dieu cho thay cau hdi tuong iing c6 dp phdn bipt t h ^ Bdi vi, HS cd nang lire tfaap lai trd ldi dung cac cau hdi khd Do do, phuong p h ^ nghien ciiu ndy giiip cho viec xac dinfa va loai bd cdc cau hdi cd he so CP cao va gid tri ^C/C thap Hop cdng cu MATLAB nghien cihi ciing cho thay la rat hiiu dung vd tipn ich, giiip xac dinh vi tri cua cdc cau hdi dua theo h? so chu y CP va gja tri GP (hinh 3), tir gii^ cho viec l o ^ bd cac cdu fadi cd he so chu y CP ldn faon 0,5 Dua tren phuong phdp ciing co tfai tmfa dupc fae so chii y CS, gid tri Gamma va gid tri AUC ciia tung HS Tren co sd co tiie xac dinh dupc nang lyc hpc tap cua mdi HS Ngodi ra, nd ciing cung c4p cho gido vien nhung thdng tin can thiet nham xac djnh diing hon ve nfagn tfaiic cua HS fapc t ^ , tu dd de xuat kip tfadi cdc bien pfa^ diiu cfainh hoat dpng d^y fapc, thuc hien rauc ifich day hpc dap iing yeu cau doi mdi can bdn, todn dien gido due vd ddo tao Ket lu^n Ket qud nghien ciru cho thay cd the sut dung bdng GSP va phuong phap ROC de phan tich va lya chpn cau hdi TNKQ doi vdi trudng hop c5 mdu ldn Bai viet se rat hiiu ich cho cac nha quan Iy giao due, giao vien vd tat ca nhitag quan tam den viec tim kiem mdt phuong phap de nang cao hi^u qua cua vipc kiem tra, ddnh gia HS thdng qua cdufadiTNKQ ^ N ^ e n cuu n ^ dd bo sung, faodn thien hOp cdng cu MATLAB cho phan ticfa vd lua chpn cau hdi TNKQ dya tren bang GSP va pfauong phap ROC Tren giao dien fapa ngudi diing ciia hOp TROdNG SAI HOC D N G THAI cong cu MATLAB c6 the xac dinh dugrc vi tri ciia cac cau hoi dua theo h6 so chii y CP va gia tri GP, giup cho v i | c phan tich va lua chgn cau hoi d l dang hon Tir nhung ket qua nghien cim cho thay, day la phuong phap ma cac giao viSn co the su Tap chi Khoa hoc so 24 (02-2017) dyng nhSm cai thien chfa lugng bien soan va thiet ke de thi, de kiem tra TNKQ, dong thoi nghien ciiu ciing cho thay giao vi§n co the ap dung phuomg phap xay dung ngan hang cau h6i TNKQ de kiem tra, danh gia ket q u i hoc t^p ciha HS Tai li8u t h a m khao [1] Baker, F B (2001), "The basics of item response theory", http://ericae net/irt/baker [2] Nguyen Phuoc Hai, Du Thong Nhit (2014), "Danh gia kSt q u i xep hang va du bao ket qua hpc tip ciia HS dua tren phan tich quan he xam va mo hinh xam", Tqp chi khtm hoc Trudng Dqi hoc Can Tha, (So 32), tr 43-50 [3] Nguyin Phuoc Hai, Du Thong Nhat (2015), "Phan tich va lua chon can hdi TNKQ dua tren bang S-P, phan tich quan he xam va duong cong ROC", Tap chi Khoa hoc Dqi hoc Su phqm Thanh phd Ho ChiMinh, (S6 (72)), tr 163-173 [4] Nguyin Phuoc Hm, Sheu, T W., & Nagai, M (2015), "Du bao ket qua hoc tap cua HS dua tren su ket hgp phuong phap gan diing Taylor va cac mo hinh xam", Tqp chi Khoa hpc Bqi hoc Quoc gia Hq Ngi: Nghien ctiu Gicto due, (So 31(2)), tr 70-83 [5] Kumar, R , & Indrayan, A (2011), "Receiver operating characteristic (ROC) curve for medical researchers", Indian Pediatrics, 48(4), Ill-Til [6] Nguyen, P H , Sheu, T W., Nguyen, P T., Pham, D H., & Nagai, M (2014), "Taylor Approximation Method in Grey System Theory and Its Apphcation to Predict the Number of Teachers and Students for Admission", Intemationql Joumql of Innovation and Scientific Research, 10(2), 353-363 [7] Sheu, T W., Nguyen, P T., Tsai, C P., Pham, D H., Nguyen, P H , & Nagai, M (2014), "Using Grey Student-Problem Chart in the Evaluarion of Tests with Large Data Sets", Education Practice and Innovation, 1(2), 40-50 [8] Rupp, A A (2003), "Item response modeling with BILOG-MG and MULTTLOG for Wmtiovfs",IntemationalJoumal of Testing, 3(4), 365-384 [9] Tavakol, M , & Dennick, R (2012), "Standard Setting: the apphcation of the Receiver Operating Characteristic method", Intemational Joumal of Medical Education, 3,198-200 [10], Lam Quang Thiep (2011), Do htong gido due - Li thttyit vd ung dung, NXB Dsii hgc Quoc gia Ha Noi, Ha Ngi USING GSP CHART AND ROC METHOD TO ANALYZE AND SELECT MULTIPLE CHOICE ITEMS Sunmiary This paper aims to propose the analysis - selection method for mulitple-choice items based on GSP chart and ROC method with large samples In this smdy, the proposed method has been compared with that of the item-response The research results showed that this melhod can be used not oidy to analyze and select multiple-choice items, but also improve the quality and efficiency of designing test items to build a test item bank related Keywords; GSP chart, ROC method, item response theory, multiple-choice items, item bank Ngay nhqn hdi: 10/3/2016; Ngiy nhqn Iqi: 26/6/2016; Ngdy duyet dang: 27/9/2016 17 ... hoi TNKQ dua trSn bang^ GSP va phuong phap ROC (GSP- ROC) , co the thay ket qua cac gia tri CP, Gamma vkAUC cua cac cau hoi va hinh Snh vl gia hi Gamma, cac duong cong ROC Clia cSu h6i qua tririi... cuu Bang K^ qua phSn ti''ch 25 cSu hoi dya trfin BILOG-MG vi GSP- ROC Cau hoi 11 10 19 13 , 14 18 17 20 12 24 22 '' "i 16 S 21 23 IS 25 GSP- ROC CP Gamma AVC 1,00 0.28 0.79 0.21 0,76 0.46 0.75 0,70... dung bdng GSP va phuong phap ROC de phan tich va lya chpn cau hdi TNKQ doi vdi trudng hop c5 mdu ldn Bai viet se rat hiiu ich cho cac nha quan Iy giao due, giao vien vd tat ca nhitag quan tam

Ngày đăng: 13/11/2022, 21:40

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w