1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 27 - Đề 29 pptx

1 56 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 129,3 KB

Nội dung

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm). Câu I (2,0 điểm). Cho hàm số y = x 3 – (m + 2)x 2 + (1 – m)x + 3m – 1, đồ thị (C m ), m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị với m = 1. 2. Xác định giá trị m để hàm số đã cho đạt cực trị tại x 1 , x 2 : x 1 – x 2  = 2 Câu II (2,0 điểm). 1. Giải phương trình: 2cos6x + 2cos4x – 3 cos2x = sin2x + 3 2. Tìm giá trị m để hệ phương trình sau có nghiệm:        1m2yx m1y1x Câu III (1,0 điểm). Tính tích phân: I =     1 0 3 1x xdx Câu IV (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình thoi. SA = a, (0 < a < 3 ), các cạnh còn lại đều bằng 1. Tính thể tích hình chóp S.ABCD theo a. Câu V (1,0 điểm). Cho a, b, c thuộc [0; 2]. Chứng minh: 2(a + b + c) – (ab + bc + ca)  4 PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình Chuẩn. Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy. Cho các điểm A(1; 0), B(2; 1) và đường thẳng d: 2x  y + 3 = 0. Tìm điểm M trên d sao cho MA + MB nhỏ nhất. 2. Trong không gian với hệ toạ độ Oxyz, cho tam giác ABC. Biết toạ độ A(–1; 0; 1), B(1; 2; –1), C(–1; 2; 3). Xác định tọa độ tâm và bán kính đường tròn ngoại tiếp tam giác ABC. Câu VII.a (1,0 điểm) Cho z 1 , z 2 là các nghiệm phức của phương trình: 2z 2 – 4z + 11 = 0. Tính giá trị của biểu thức P =   2 21 2 2 2 1 zz zz   B. Theo chương trình Nâng cao. Câu VI.b (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho elíp (E): x 2 + 4y 2 = 4. Tìm các điểm M trên elíp (E) sao cho góc F 1 MF 2 = 60 0 . 2. Trong không gian với hệ tọa độ Oxyz, cho điểm I(1; 5; 0) và 2 đường thẳng:  1 : 2 1z 1 4y 1 x      ;  2 : 3 z 3 2y 1 x      Viết phương trình tham số của đường thẳng  đi qua điểm I và cắt cả 2 đường thẳng  1 và  2 . Câu VII.b (1,0 điểm) Tìm số phức z thoả mãn:          4zz i2zziz2 2 2 Hết .     1 0 3 1x xdx Câu IV (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình thoi. SA = a, (0 < a < 3 ), các cạnh còn lại đều bằng 1. Tính. thể tích hình chóp S.ABCD theo a. Câu V (1,0 điểm). Cho a, b, c thuộc [0; 2]. Chứng minh: 2(a + b + c) – (ab + bc + ca)  4 PHẦN RIÊNG (3,0 điểm). Thí

Ngày đăng: 16/03/2014, 22:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN