1. Trang chủ
  2. » Thể loại khác

Chuyên đề tứ giác nội tiếp ôn thi vào 10

18 13 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 721,96 KB

Nội dung

CHUYÊN ĐỀ TỨ GIÁC NỘI TIẾP ÔN THI VÀO 10 MỘT SỐ TIÊU CHUẨN NHẬN BIẾT TỨ GIÁC NỘI TIẾPTiêu chuẩn 1. Điều kiện cần và đủ để bốn đỉnh của một tứ giác lồi nằm trêncùng một đường tròn là tổng số đo của hai góc tứ giác tại hai đỉnh đối diện bằng 180 độ

MỘT SỐ TIÊU CHUẨN NHẬN BIẾT TỨ GIÁC NỘI TIẾP Tiêu chuẩn Điều kiện cần đủ để bốn đỉnh tứ giác lồi nằm đường trịn tổng số đo hai góc tứ giác hai đỉnh đối diện 1800 A D B C x Điều kiện để tứ giác lồi ABCD nội tiếp là: A + C = 1800 B + D = 1800 Hệ quả: Tứ giác ABCD nội tiếp BAD = DCx Một số ví dụ Ví dụ 1: Cho tam giác ABC vng A Kẻ đường cao AH phân giác AD góc HAC Phân giác góc ABC cắt AH,AD M,N Chứng minh rằng: BND = 900 Phân tích hướng dẫn giải: A Ta có MHD = 90 Nếu MND = 90 tứ giác MHDN nội tiếp Vì thay trực tiếp góc BND = 900 ta chứng minh N M B H D C tứ giác MHDN nội tiếp Tức ta chứng minh AMN = ADH Thật ta có AMN = BMH = 900 − MBH , NDH = 900 − HAD mà MBH = 1 ABC,HAD = HAC ABC = HAC phụ với góc BCA từ 2 suy AMN = ADH hay tứ giác MHDN nội tiếp  MND = MHD = 900 THCS.TOANMATH.com Ví dụ 2: Cho tam giác ABC có góc nhọn nội tiếp đường trịn (O) có trực tâm điểm H Gọi M điểm dây cung BC không chứa điểm A ( M khác B,C ) Gọi N,P theo thứ tự điểm đối xứng M qua đường thẳng AB,AC a) Chứng minh AHCP tứ giác nội tiếp b) N,H,P thẳng hàng c) Tìm vị trí điểm M để độ dài đoạn NP lớn Phân tích hướng dẫn giải: A P I O H N B C K M a) Giả sử đường cao tam giác AK,CI Để chứng minh AHCP tứ giác nội tiếp ta chứng minh AHC + APC = 1800 Mặt khác ta có AHC = IHK ( đối đỉnh), APC = AMC = ABC ( tính đối xứng góc nội tiếp chắn cung) Như ta cần chứng minh ABC + IHK = 1800 điều hiển nhiên tứ giác BIHK tứ giác nội tiếp b) Để chứng minh N,H,P thẳng hàng ta chứng minh NHA + AHP = 1800 ta tìm cách quy hai góc góc đối tứ giác nội tiếp Thật ta có: AHP = ACP (tính chất góc nội tiếp), ACP = ACM (1) (Tính chất đối xứng) Ta thấy vai trị tứ giác AHCP giống với AHBN nên ta dễ chứng minh AHBN tứ giác nội tiếp từ suy AHN = ABN , mặt khác ABN = ABM (2) (Tính chất đối xứng) Từ (1), (2) ta suy cần THCS.TOANMATH.com chứng minh ABM + ACM = 1800 điều hiển nhiên tứ giác ABMC nội tiếp Vậy NHA + AHP = 1800 hay N,H,P thẳng hàng Chú ý: Đường thẳng qua N,H,P đường thẳng Steiners điểm M Thơng qua tốn em học sinh cần nhớ tính chất Đường thẳng Steiners tam giác qua trực tâm tam giác (Xem thêm phần “Các định lý hình học tiếng’’) c) Ta có MAN = 2BAM,MAP = 2MAC  NAP = 2BAC Mặt khác ta có AM = AN = AP nên điểm M,N,P thuộc đường tròn tâm A bán kính AM Áp dụng định lý sin tam giác NAP ta có: NP = 2R.sin NAP = 2AM.sin 2BAC Như NP lớn AM lớn Hay AM đường kính đường trịn (O) Ví dụ 3: Cho tam giác ABC đường cao AH gọi M,N trung điểm AB,AC Đường tròn ngoại tiếp tam giác BHM cắt đường tròn ngoại tiếp tam giác CNH E Chứng minh AMEN tứ giác nội tiếp A HE qua trung điểm MN Phân tích, định hướng cách giải: Để chứng minh AMEN tứ giác nội tiếp ta I N M chứng minh: MAN + MEN = 1800 Ta cần tìm liên hệ góc E MAN; MEN với góc có sẵn B tứ giác nội tiếp khác Ta có ( ) ( K C H ) MEN = 3600 − MEH + NEH = 3600 − 1800 − ABC + 1800 − ACB = ABC + ACB = 1800 − BAC suy MEN + MAN = 1800 Hay tứ giác AMEN tứ giác nội tiếp Kẻ MK ⊥ BC , giả sử HE cắt MN I IH cát tuyến hai đường tròn (BMH) , (CNH) Lại có MB = MH = MA (Tính chất trung tuyến tam giác vuông) Suy tam giác MBH cân M  KB = KH  MK qua tâm đường tròn ngoại tiếp tam giác MBH Hay MN tiếp tuyến THCS.TOANMATH.com (MBH) suy IM = IE.IH , tương tự ta có MN tiếp tuyến ( HNC) suy IN2 = IE.IH IM = IN Xem thêm phần: ‘’Các tính chất cát tuyến tiếp tuyến’’ Ví dụ 4) Cho tam giác cân ABC (AB = AC) P điểm cạnh đáy BC Kẻ đường thẳng PE,PD song song với AB,AC ( E  AC, D  AB) gọi Q điểm đối xứng với P qua DE Chứng minh bốn điểm Q,A, B,C thuộc đường tròn A Phân tích định hướng giải: D Bài tốn có giả thiết cần lưu ý Q I Đó đường thẳng song song E với cạnh tam giác , điểm Q đối xứng với P qua DE H Do ta có: AD = EP = EC = EQ C B P DP = DQ ( Đây chìa khóa để ta giải tốn này) Từ định hướng ta có lời giải sau: Do AD / /PE,PD / /AE  ADPE hình bình hành  AE = DP = DQ Mặt khác P,Q đối xứng qua DE  AD = PE = EQ Suy DAQE hình thang cân  DAQ = AQE Kéo dài DE cắt CQ H ta có DAQ = AQE = PEH Như để chứng minh ABCQ nội tiếp ta cần chứng minh: PCH + PEH = 1800  PEHC tứ giác nội tiếp Mặt khác ta có: ECQ = EQC (do tam giác EQC cân), EPH = EQH (Do tính đối xứng ) suy ECH = EPH  EPCH tứ giác nội tiếp THCS.TOANMATH.com Ví dụ 5) Cho tam giác ABC nội tiếp đường tròn ( O ) Dựng đường tròn qua B tiếp xúc với cạnh AC A dựng đường tròn qua C tiếp xúc với AB A hai đường tròn cắt D Chứng minh ADO = 900 Phân tích định hướng giải: Ta thấy ADO = 900 điểm A, D,O nằm đường trịn đường kính OA Ta mong muốn tìm A góc ADO = 900 Điều làm ta nghỉ đến tính chất quen thuộc ‘’Đường kính qua trung điểm dây cung vng góc với dây đó’’ Vì ta gọi M,N trung điểm AB,AC ta có: N M O D C B OMA = ONA = 900 Do tứ giác OMAN nội tiếp Cơng việc cịn lại ta chứng minh AMDO ANOD DMAN tứ giác nội tiếp Mặt khác ta có: ABD = CAD ACD = BAD (Tính chất góc tạo tiếp tuyến dây cung)  BDA ADC đồng dạng nên ta suy DMA = DNC  DMA + DNA = DNC + DNA = 1800  AMDN nội tiếp suy năm điểm A,M, D,O,N nằm đường tròn đường kính OA  ADO = 900 Ví dụ 6: Cho tam giác ABC vng cân A đường trịn ( O ) tiếp xúc với AB,AC B,C Trên cung BC nằm tam giác ABC lấy điểm M ( M  B; C ) Gọi I,H,K hình chiếu M BC; CA; AB P giao điểm MB với IK, Q giao điểm MC với IH Chứng minh PQ / /BC Phân tích định hướng giải: Để chứng minh PQ / /BC A H ta chứng minh MPQ = MBC tứ giác BIMK nội tiếp nên MBC = MKI Mặt khác AC tiếp tuyến (O) nên ta có: ACK = MBC CIMH THCS.TOANMATH.com K M Q P B C I O nội tiếp nên ACK = MIH Như để chứng minh PQ / /BC ta cần chứng minh MIH = MPQ Tức ta cần chứng minh tứ giác MPIQ nội tiếp Để ý BMC = KMH = 1350 , PIQ = PIM + IMQ = KBM + KCH = ) ( sđ BM + MC = 450 suy đpcm.(Các em học sinh tự hoàn thiện lời giải) Tiêu chuẩn 2: Tứ giác ABCD nội tiếp ADB = ACB A D O B C Ví dụ Trên cạnh BC,CD hình vuông ABCD ta lấy điểm M,N cho MAN = 450 Đường thẳng BD cắt đường thẳng AM,AN tương ứng điểm P,Q a) Chứng minh tứ giác ABMQ ADNP nội tiếp b) Chứng minh điểm M,N,Q,P,C nằm đường tròn Lời giải: a) Gọi E giao điểm AN BC Các điểm M Q nằm hai cạnh EB EA tam giác EBA , nên tứ giác ABMQ lồi Các đỉnh A B B A nhìn đoạn thẳng MQ góc 45 Vì tứ giác ABMQ nội tiếp D Lập luận tương tự ta suy tứ giác ADNP nội tiếp b) Từ kết câu a, suy P M Q N ADP = ANP = 450 ,QAM = QBM = 450  NP ⊥ AM,MQ ⊥ AN Tập hợp THCS.TOANMATH.com C E điểm P,Q,C nhìn đoạn MN góc vng, nên điểm nằm đường trịn đường kính MN Ví dụ 2) Cho điểm M thuộc cung nhỏ BC đường tròn ( O ) Một đường thẳng d ( O ) vng góc với OM ; CM, BM cắt d D,E Chứng minh B,C, D,E thuộc đường tròn Lời giải: Kẻ đường kính AM cắt d N Ta có ANE = ABE = 900 nên tứ giác ABNE nội tiếp, suy BEN = BAN A Mặt khác BAN = BCM , BCM = BEN hay BCD = BED Vậy B,C, D,E thuộc đường trịn O C B M N E D Ví dụ 3) Cho tam giác ABC có đường cao AD, BE,CF đồng quy H Gọi K giao điểm EF AH , M trung điểm AH Chứng minh K trực tâm tam giác MBC A Lời giải: Lấy điểm S đối xứng với H qua M E BC , R giao điểm KC với MB R K F Vì ME = MA = MH (Tính chất trung tuyến), kết hợp tính đối xứng điểm H S ta có MSB = BHD = MHE = MEB nên tứ giác MESB nội tiếp Suy B D RBE = MSE (1) S nội tiếp, Lại có KSC = CHD = AHF = AEK nên tứ giác KSCE MSE = RCE (2).Từ (1) (2) suy RBE = RCE nên tứ giác RBCE nội tiếp THCS.TOANMATH.com C Từ suy BRC = BEC = 900 Trong tam giác MBC , ta có MK ⊥ BC CK ⊥ MB nên K trực tâm tam giác MBC Ví dụ 4) Cho tam giác ABC nội tiếp đường tròn tâm O Đường tròn (O') tiếp xúc với cạnh AB,AC E,F tiếp xúc với (O) S Gọi I tâm đường tròn nội tiếp tam giác ABC Chứng minh BEIS,CFIS tứ giác nội tiếp A Lời giải: Nhận xét: toán thực chất M định lý Lyness phát biểu N theo cách khác;(Xem thêm phần: ‘’Các định lý hình học tiếng’’) O Kéo dài SE,SF cắt đường tròn (O) I E E,F Ta có tam giác OMS, O'EF cân O,O' nên F O' C O'ES=OMS  O'E / /OM  OM ⊥ AB B S hay M điểm cung AB x Kẻ đường phân giác góc ACB cắt EF I , ta chứng minh I tâm đường tròn nội tiếp tam giác ABC Thật ta có: C,I,M thẳng hàng ICS  MCS = MSx IFS  EFS = MSx nên ICS = IFS  tứ giác IFCS tứ giác nội tiếp  EIS = SCF Mặt khác tứ giác ACSB nội tiếp nên ACS + ABS = 1800  EIS + ABS = 1800 hay tứ giác EISB nội tiếp Cơng việc cịn lại chứng minh: IB phân giác góc ABC Vì EBI = ESI mà ESI = ISB − ESB = AEF − MSB = 180 − A 180 − A C B − MCB = − = Điều 2 2 chứng tỏ IB phân giác góc ABC Hay I tâm vòng tròn nội tiếp tam giác ABC Chú ý: Nếu thay giả thiết điểm I tâm vòng tròn nội tiếp tam giác thành Các đường tròn ngoại tiếp tam giác FCS, SBS cắt I hình thức tốn khác chất định lý Lyness Để ý rằng: AEF cân A nên ta dễ dàng suy được: I trung điểm EF THCS.TOANMATH.com Ví dụ 5) Cho hai đường trịn (O1 ),(O2 ) tiếp xúc ngồi với Kẻ đường thẳng O1O cắt hai đường tròn (O1 ),(O2 ) A,B,C ( B tiếp điểm ) Đường thẳng  tiếp tuyến chung hai đường tròn với tiếp điểm tương ứng D1 , D2 Đường thẳng (  ') tiếp tuyến với (O ) qua C Đường thẳng BD1 cắt (  ') E AD1 cắt ED2 M , AD2 cắt BD1 H Chứng minh AE ⊥ MH Phân tích định hướng giải: + Vì ED1 ⊥ MA góc AD1 B M N góc nội tiếp chắn đường trịn Vì để chứng minh AE ⊥ MH ta phải chứng minh AD2 ⊥ ME , tức ta chứng minh H trực tâm tam giác MAE Khi ta có: Δ D1 I D2 Δ' H A O1 B O2 C AD1E = AD2 E hay tứ giác AD1D2 E tứ giác nội tiếp + Gọi N giao điểm CD AM Xét tiếp tuyến chung (O1 ) (O ) qua B cắt () I Khi ta có: ID1 = IB = ID2  BD1D2 vuông B , D1E / /CN (cùng vng góc với BD2 ) Do BAD1 = BD1D2 (Góc tạo tia tiếp tuyến dây cung), mặt khác BD1D2 = D1D2 N (so le trong) Suy CAD1 = ND2 D1  AD1D2 C tứ giác nội tiếp (1) Xét tứ giác ED1D2 C ta có: ED1 / /CD2 , BEC = IBD1 ( góc đồng vị) Suy ED1D2 = D1EC suy tứ giác ED1 D2 C hình thang cân nên nội tiếp (2) Từ (1), (2) ta suy điểm A, D1 , D2 ,C,E thuộc đường tròn Suy tứ giác AD1D2 E nội tiếp Ví dụ 6) Cho tam giác ABC có hai đường cao BD,CE cắt H gọi I trung điểm BC Hai đường tròn ngoại tiếp tam giác BEI CDI cắt K , DE cắt BC M Chứng minh tứ giác BKDM nội tiếp Phân tích định hướng giải: Ta thấy đường tròn ngoại tiếp tam giác ADE, BEI,CDI cắt điểm K (Định lý Miquel) Như ta thấy AEKD tứ giác nội tiếp, THCS.TOANMATH.com E mặt khác từ giả thiết ta có: AEHD tứ giác nội tiếp Nên suy điểm A,E,H,K,D thuộc đường trịn đường kính AH Đây chìa khóa để giải tốn Lời giải: Trước tiên ta chứng minh: tứ giác AEKD nội tiếp (Bạn đọc tham khảo phần ‘’Các định lý hình học tiếng’’) Ta có: A + B + C + EKC + EKI + IKD = 5400 Theo giả thiết B + EKI = IKD + C = 1800  A + EKD = 1800  tứ giác AEKD nội tiếp  ADE = AKE , BD ⊥ AC,CE ⊥ AB  tứ giác BEDC nội tiếp  ADE = B Kết hợp với ADE = AKE B = AKE  EKI + AKE = EKI + B = 1800  A,K,I thẳng hàng BDC tam giác vuông nên ID = IC , IKDC tứ giác nội tiếp nên ta có: IKC = IDC = ICD, IKC = KAC + ACK (Tính chất góc ngồi ), ICD = ICK + KCD  KAC = ICK, mà KAD = DEK (chắn cung DK )  ICK = DEK  tứ giác MEKC nội tiếp  MEC = MKC Theo kết suy IKC = AED = MEB,MEC = MEB + 900 ,MKC = MKI + IKC  MKI = 900  MK ⊥ KI  A,E,H,D,K nằm đường trịn đường kính AH  HK ⊥ AI  M,H,K thẳng hàng Tứ giác DEHK nội tiếp  HEK = HDK , tứ giác MEKC nội tiếp  KEC = KMC  KMC = HDK  KMB = BDK  tứ giác BKDM nội tiếp Ví dụ 7) Cho hai đường tròn (O1 ),(O2 ) cắt A, B Kéo dài AB phía B lấy điểm M qua M kẻ hai tiếp tuyến ME,MF với đường tròn (O1 ) ( E,F tiếp điểm) điểm F,O2 nằm phía so với AB Đường thẳng BE, BF cắt đường tròn (O ) P,Q gọi I giao điểm PQ EF Chứng minh I trung điểm PQ Phân tích định hướng giải: Q A O2 O1 F B E THCS.TOANMATH.com I M P Để ý rằng: Đường thẳng EFI cắt ba cạnh tam giác BPQ I,E,F Theo định lý Menelauyt ta có: QI EP FB = Để chứng minh I trung IP EB FQ điểm PQ ta chứng minh: đại lượng EP FB = Bây ta tìm cách thay EB FQ EP FB = (*) thành đại lượng tương đương để EB FQ thơng qua ta quy việc chứng minh tứ giác nội tiếp, tam giác đồng dạng Xét đường tròn (O1 ) với cát tuyến M, B,A hai tiếp tuyến ME,MF Ta có tính chất quen thuộc: tuyến tiếp tuyến) Từ suy chứng minh: FA EA = (Xem phần chùm tập cát FB EB FB FA = thay vào (*) ta quy toán EB EA EP FA EP EA =1 =  EPA FQ EA FQ FA FQA ta có: EPA = FQA góc nội tiếp chắn cung AB AEP = AFQ (tứ giác AEBF nội tiếp) Qua ta có kết cần chứng minh: Các em học sinh tự hoàn chỉnh lời giải dựa phân tích định hướng mà tác giải vừa trình bày Nếu khơng dùng định lý Menaleuyt ta giải theo khác sau: Vì MF tiếp tuyến đường trịn (O1 ) nên ta có: MFB = FAB (Tính chất góc tạo tiếp tuyến dây cung) Suy MFB, MAF đồng dạng  MF FB = Tương tự ta có: MA FA  ME EB FB EB = = , mà ME = MF  (1) , mặt khác AFE =ABE (chắn FA EA MA EA MEB, MAE đồng dạng suy cung AE ) ABE = AQP (do tứ giác ABPQ nội tiếp) Suy AFE = AQP  AFIQ tứ giác nội tiếp, suy AFQ = AIQ  AFB = AIP , ta có: ABF = APQ suy FBA, IPA đồng dạng suy THCS.TOANMATH.com BF PI = (2) AF AI Tương tự ta chứng minh được: ABE, AQI đồng dạng suy (3).Từ (1), (2), (3) suy QI BE = IA AE QI PI =  IP = IQ IA IA Ví dụ 8) Cho tam giác ABC Đường tròn ( O ) qua A C cắt AB,AC theo thứ tự K N Đường tròn tâm I ngoại tiếp tam giác ABC đường tròn tâm J ngoại tiếp tam giác KBN cắt B M Chứng minh BIOJ hình bình hành từ suy OMB vng Phân tích định hướng giải: B x Để chứng minh BIOJ M hình bình hành ta chứng minh N J BI / /OJ, BJ / /OI Q Mặt khác dễ thấy OI trung K I trực AC nên OI ⊥ AC Ta cần chứng minh BJ ⊥ AC , O việc tìm liên hệ trực tiếp tương C A đối khó ta nghỉ đến hướng tạo đường thẳng ‘’đặc biệt’’ vng góc với BJ sau chứng minh đường thẳng song song với AC từ ta nghỉ đến dựng tiếp tuyến Bx đường tròn ngoại tiếp tam giác BKN Khi ta có : Bx ⊥ BJ KBx = BNK (Tính chất góc tạo tiếp tuyến dây) Mặt khác AKNC nội tiếp  BAC = BNK  MKx = A  Bx / /AC Từ suy BJ / /OI Tương tự: Từ B kẻ tiếp tuyến By với đường tròn ngoại tiếp ABC , chứng minh ta có: BI / /OJ  tứ giác BIOJ hình bình hành Gọi Q giao điểm BO IJ  QO = QB , IJ trung trực BM (Tính chất đường nối tâm hai đường tròn cắt nhau)  QM = QB  QM = QB = QO  BMO tam giác vuông  OMB = 900 Ví dụ 9) Cho hai đường tròn ( O1 ) ( O2 ) tiếp xúc M (đường tròn ( O2 ) nằm trong) Hai điểm P Q thuộc đường tròn ( O2 ) qua P kẻ tiếp tuyến với ( O2 ) cắt ( O1 ) B D qua Q kẻ tiếp tuyến với ( O2 ) cắt THCS.TOANMATH.com ( O1 ) A C Chứng minh tâm đường tròn nội tiếp tam giác ACD, BCD nằm PQ Phân tích định hướng giải: Vì giả thiết hai đường trịn tiếp xúc với điểm A M nên ta nghỉ đến việc tiếp tuyến chung Mx B E để tận dụng yếu tố góc: Bài tốn làm ta nghỉ đến định lý Lyness tiếng O1 ( Xem thêm phần định lý P hình học tiếng I Q (Định lý Lyness mở rộng) O2 tínhchất quen thuộc liên quan đến D C chứng minh định lý là: MP M phân giác góc DMB , kéo dài MP cắt (O1 ) E E trung điểm BD … Từ định hướng ta suy cách giải cho toán sau: + Dựng tiếp tuyến chung Mx hai đường trịn (O1 ),(O2 ) ta có: DPM = PMx = 1 sđPM , DBM = DMx = sđDM mà DPM = PMB + PBM (tính 2 chất góc ngồi tam giác), PMx = PMD + DMx  PMD = PMB  MP phân giác DMB , gọi E giao điểm MP với ( O1 ) E trung điểm BD  CE phân giác BCD + Gọi I giao điểm CE PQ ta cần chứng minh DI phân giác củan BDC Mặt khác I tâm vòng tròn nội tiếp tam giác BCD ta có: EI = ED = EB (Tính chất quen thuộc liên quan đến tâm vịng trịn nội tiếp, bạn đọc xem thêm phần ‘’góc ‘’ phần đầu ) + Ta có ICM = ( ) ( ) 1 sđEDM = sđDM + sđDE = sđDM + sđEB = DPM = EPB = 2 IQM  IQCM nội tiếp suy MIC = MQC mà MQC = MPQ = (Tính chất góc tạo tiếp tuyến dây cung) suy THCS.TOANMATH.com sđMQ x MIC = MPQ  EPI = EIM  EIM đồng dạng EPI  EI = EP.EM, Tương tự ta chứng minh DPIM tứ giác nội tiếp DEP đồng dạng với MDE  ED2 = EP.EM  ED = EI = EB  EDI = EID  I tâm đường tròn nội tiếp BCD + Tương tự, tâm đường tròn nội tiếp ACD nằm PQ Nhận xét: Đối với tốn có giả thiết hai đường trịn tiếp xúc với việc kẻ tiếp tuyến chung để suy góc từ phát tứ giác nội tiếp hướng quan trọng để giải tốn ) ( Ví dụ 10) Cho tam giác vng ABC A = 900 B  C tiếp tuyến với đường tròn ngoại tiếp tam giác ABC A cắt cạnh BC kéo dài D gọi E điểm đối xứng A qua BC , H hình chiếu A BE Gọi I trung điểm AH đường thẳng BI cắt đường tròn ngoại tiếp tam giác ABC K Chứng minh BD tiếp tuyến đường tròn ngoại tiếp tam giác ADK Phân tích định hướng giải: A K I B O M C D H E Để chứng minh đường thẳng tiếp tuyến đường trịn thơng thường ta chứng minh đường thẳng vng góc với bán kính tiếp điểm Muốn làm điều điều kiện cần phải xác định rõ tâm đường trịn Nhưng việc làm khơng dễ tâm đường trịn khơng phải điểm đặc biệt Để khắc phục khó khăn ta thường chọn cách chứng minh theo tính chất góc nội tiếp góc tạo tiếp tuyến dây cung Trở lại toán: Để chứng minh BD tiếp tuyến đường tròn (AKD) ta phải chứng minh: KDB = KAD + Vì E điểm đối xứng A qua BC  DE tiếp tuyến đường tròn THCS.TOANMATH.com ngoại tiếp ABC  AE ⊥ BC MA = ME Theo giả thiết IA = IH nên IM / /BE  KIM = KBE = KAE  A,I,M,K nằm đường tròn  IAM = IKM ; BAH = BAE − HAE = BKE − IKM = MKE (1) Mặt khác, ABE = EAD (chắn cung AE ); BAH = 900 − ABH = 900 − EAD = ADM = EDM (2) + Từ (1) (2) suy MKE = EDM  bốn điểm M,K, D,E nằm đường tròn  KDM = KEM = KEA = KAD  BD tiếp tuyến đường tròn ngoại tiếp tam giác ADK Tiêu chuẩn 3) Cho hai đường thẳng 1 ,  cắt điểm M Trên hai đường thẳng 1 ,  lấy điểm A, B C, D điểm A, B,C, D thuộc đường tròn MA.MB = MC.MD B A C B O M M C A D D Ví dụ 1) Cho đường trịn tâm (O) đường kính AB đường thẳng  nằm ngồi đường trịn (O) vng góc với AB C Kẻ cát tuyến CMN với đường tròn (O) , AM,AN cắt  D,E Chứng minh MNED nội tiếp được: Phân tích định hướng giải: A O B N M Δ THCS.TOANMATH.com E C D Vì AMB = 900  BCDM tứ giác nội tiếp , suy AB.AC = AM.AD (1) Tương góc ANB = 900  BNE = BCE = 900 hay tứ giác BCNE nội tiếp, từ suy AB.AC = AN.AE (2) Kết hợp (1), (2) ta có: AM.AD = AN.AE  MNED tứ giác nội tiếp Ví dụ 2) Cho tam giác cân ABC(AB = AC,A  900 ) có đường cao BD Gọi M,N,I theo thứ tự trung điểm đoạn BC, BM, BD Tia NI cắt cạnh AC K Chứng minh tứ giác ABMD,ABNK nội tiếp 3BC2 = 4CA.CK A Giải: Do tam giác ABC cân A nên AM ⊥ BC mặt khác BD ⊥ AC  ABMD tứ giác nội tiếp K Vì NI / / = MD  KNC = DMC , ta D có DMC = KAB (Tính chất tứ giác nội tiếp) suy KNC = KAB hay ABNK tứ giác nội tiếp Ta có: CA.CK = CN.CB mà CN = I B N M 3 CB  BC2 = CA.CK  3BC2 = 4CA.CK 4 Ví dụ 3) Cho tứ giác lồi ABCD có giao điểm đường chéo M Đường phân giác góc ACD cắt BA K Giả sử MA.MC + MA.CD = MB.MD Chứng minh BKC = CDB Phân tích định hướng giải: K A B D M N C THCS.TOANMATH.com C Ta gọi N giao điểm CK BD theo tính chất đường phân giác ta có: ND CD MC.DN =  CD = thay vào biểu thức NM CM MN MA.MC + MA.CD = MB.MD ta có: MB.MD = MA.MC + MA MC.DN MD = MA.MC  MA.MC = MB.MN Do MN MN M nằm tứ giác ABCN theo tiêu chuẩn ta có: ABNC tứ giác nội tiếp nên ABD = ACK = KCD Theo tiêu chuẩn ta có: BCDK tứ giác nội tiếp Suy BKC = CDB Ví dụ 4) Cho tam giác ABC Đường tròn ( O ) qua A C cắt AB,AC theo thứ tự K N Đường tròn tâm I ngoại tiếp tam giác ABC đường tròn tâm J ngoại tiếp tam giác KBN cắt B M Chứng minh OMB vng (IMO 1985) Phân tích định hướng giải: Gọi P giao điểm đường thẳng AC KN Ta có KMA = BMA − BMK = BCA − BNK = KPA nên điểm M,P,A,K nằm đường trịn Ngồi ta có AMP = AKP = 180 − ACB = 180 − AMB (do ACNK tứ giác nội tiếp) nên ta suy điểm M nằm đoạn BP Gọi R bán kính đường trịn ( O ) Ta có: BM.BP = BN.BC = BK.BA = BO2 − R PM.PB = PN.PK = PA.PC = PO2 − R cộng vế hai đẳng thức ta thu được: BM.BP + PM.BP = BO2 + PO2 − 2R  BP = BO2 + PO2 − 2R Khi ta có:  BO2 − R BM − PM =   BP  2   OP2 − R  −   BP   = BO2 − OP Từ suy OM ⊥ BP THCS.TOANMATH.com  (BO2 + PO2 − 2R )(BO2 − OP2 )  =  BP2  B M K N O A C P Chú ý: Để chứng minh OM ⊥ BP ta dùng kết quả: Cho tam giác ABC điểm H nằm cạnh BC Khi AH đường cao AB2 − AC2 = HB2 − HC2 Thật vậy: Nếu AH đường cao ta ln có: AB2 − AC2 = HB2 − HC2 (Theo định lý Pitago) Ngược lại: Nếu ta có: AB2 − AC2 = HB2 − HC2 (*), gọi M điểm BC cho AB2 − AC2 = MB2 − MC2 Từ ta có: HB2 − HC2 = MB2 − MC2 hay (HB + HC)(HB − HC) = (MB + MC)(MB − MC)  BC.(HB − HC) = BC(MB − MC)  HB − HC = MB − MC  M  H suy điều phải chứng minh: THCS.TOANMATH.com ... IFS  tứ giác IFCS tứ giác nội tiếp  EIS = SCF Mặt khác tứ giác ACSB nội tiếp nên ACS + ABS = 1800  EIS + ABS = 1800 hay tứ giác EISB nội tiếp Cơng việc cịn lại chứng minh: IB phân giác góc... MHE = MEB nên tứ giác MESB nội tiếp Suy B D RBE = MSE (1) S nội tiếp, Lại có KSC = CHD = AHF = AEK nên tứ giác KSCE MSE = RCE (2).Từ (1) (2) suy RBE = RCE nên tứ giác RBCE nội tiếp THCS.TOANMATH.com... đường kính AH  HK ⊥ AI  M,H,K thẳng hàng Tứ giác DEHK nội tiếp  HEK = HDK , tứ giác MEKC nội tiếp  KEC = KMC  KMC = HDK  KMB = BDK  tứ giác BKDM nội tiếp Ví dụ 7) Cho hai đường trịn (O1 ),(O2

Ngày đăng: 26/10/2022, 13:15

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w