1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Thuật toán và giải thuật

10 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 343,68 KB

Nội dung

TRƯỜNG ĐẠI HỌC KINH TẾ QUỐC DÂN THUẬT TOÁN VÀ GIẢI THUẬT GS.TSKH Hoàng Kiếm Năm 2007 TTNT CHƯƠNG : THUẬT TOÁN – THUẬT GIẢI I KHÁI NIỆM THUẬT TOÁN – THUẬT GIẢI II THUẬT GIẢI HEURISTIC III CÁC PHƯƠNG PHÁP TÌM KIẾM HEURISTIC III.1 Cấu trúc chung tốn tìm kiếm III.2 Tìm kiếm chiều sâu tìm kiếm chiều rộng III.3 Tìm kiếm leo đồi III.4 Tìm kiếm ưu tiên tối ưu (best-first search) III.5 Thuật giải AT III.6 Thuật giải AKT III.7 Thuật giải A* III.8 Ví dụ minh họa hoạt động thuật giải A* III.9 Bàn luận A* III.10 Ứng dụng A* để giải tốn Ta-canh III.11 Các chiến lược tìm kiếm lai I TỔNG QUAN THUẬT TOÁN – THUẬT GIẢI Trong trình nghiên cứu giải vấn đề – toán, người ta đưa nhận xét sau: Có nhiều tốn chưa tìm cách giải theo kiểu thuật tốn khơng biết có tồn thuật tốn hay khơng Có nhiều tốn có thuật tốn để giải khơng chấp nhận thời gian giải theo thuật tốn q lớn điều kiện cho thuật tốn khó đáp ứng Có toán giải theo cách giải vi phạm thuật toán chấp nhận TTNT Từ nhận định trên, người ta thấy cần phải có đổi cho khái niệm thuật tốn Người ta mở rộng hai tiêu chuẩn thuật toán: tính xác định tính đắn Việc mở rộng tính xác định thuật tốn thể qua giải thuật đệ quy ngẫu nhiên Tính thuật tốn khơng cịn bắt buộc số cách giải toán, cách giải gần Trong thực tiễn có nhiều trường hợp người ta chấp nhận cách giải thường cho kết tốt (nhưng lúc tốt) phức tạp hiệu Chẳng hạn giải toán thuật toán tối ưu địi hỏi máy tính thực hiên nhiều năm sẵn lịng chấp nhận giải pháp gần tối ưu mà cần máy tính chạy vài ngày vài Các cách giải chấp nhận khơng hồn tồn đáp ứng đầy đủ tiêu chuẩn thuật toán thường gọi thuật giải Khái niệm mở rộng thuật tốn mở cửa cho việc tìm kiếm phương pháp để giải toán đặt Một thuật giải thường đề cập đến sử dụng khoa học trí tuệ nhân tạo cách giải theo kiểu Heuristic II THUẬT GIẢI HEURISTIC Thuật giải Heuristic mở rộng khái niệm thuật tốn Nó thể cách giải tốn với đặc tính sau: Thường tìm lời giải tốt (nhưng không lời giải tốt nhất) Giải toán theo thuật giải Heuristic thường dễ dàng nhanh chóng đưa kết so với giải thuật tối ưu, chi phí thấp Thuật giải Heuristic thường thể tự nhiên, gần gũi với cách suy nghĩ hành động người Có nhiều phương pháp để xây dựng thuật giải Heuristic, người ta thường dựa vào số nguyên lý sau: Nguyên lý vét cạn thơng minh: Trong tốn tìm kiếm đó, khơng gian tìm kiếm lớn, ta thường tìm cách giới hạn lại khơng gian tìm kiếm thực kiểu dị tìm đặc biệt dựa vào đặc thù tốn để nhanh chóng tìm mục tiêu Nguyên lý tham lam (Greedy): Lấy tiêu chuẩn tối ưu (trên phạm vi tồn cục) tốn để làm tiêu chuẩn chọn lựa hành động cho phạm vi cục bước (hay giai đoạn) trình tìm kiếm lời giải Nguyên lý thứ tự: Thực hành động dựa cấu trúc thứ tự hợp lý không gian khảo sát nhằm nhanh chóng đạt lời giải tốt TTNT Hàm Heuristic: Trong việc xây dựng thuật giải Heuristic, người ta thường dùng hàm Heuristic Đó hàm đánh già thô, giá trị hàm phụ thuộc vào trạng thái toán bước giải Nhờ giá trị này, ta chọn cách hành động tương đối hợp lý bước thuật giải Bài tốn hành trình ngắn – ứng dụng ngun lý Greedy Bài tốn: Hãy tìm hành trình cho người giao hàng qua n điểm khác nhau, điểm qua lần trở điểm xuất phát cho tổng chiều dài đoạn đường cần ngắn Giả sử có đường nối trực tiếp từ hai điểm Tất nhiên ta giải toán cách liệt kê tất đường đi, tính chiều dài đường tìm đường có chiều dài ngắn Tuy nhiên, cách giải lại có độ phức tạp 0(n!) (một hành trình hốn vị n điểm, đó, tổng số hành trình số lượng hoán vị tập n phần tử n!) Do đó, số đại lý tăng số đường phải xét tăng lên nhanh Một cách giải đơn giản nhiều thường cho kết tương đối tốt dùng thuật giải Heuristic ứng dụng nguyên lý Greedy Tư tưởng thuật giải sau: Từ điểm khởi đầu, ta liệt kê tất quãng đường từ điểm xuất phát n đại lý chọn theo đường ngắn Khi đến đại lý, chọn đến đại lý theo nguyên tắc Nghĩa liệt kê tất đường từ đại lý ta đứng đến đại lý chưa đến Chọn đường ngắn Lặp lại trình lúc khơng cịn đại lý để Bạn quan sát hình sau để thấy q trình chọn lựa Theo nguyên lý Greedy, ta lấy tiêu chuẩn hành trình ngắn tốn làm tiêu chuẩn cho chọn lựa cục Ta hy vọng rằng, n đoạn đường ngắn cuối ta có hành trình ngắn Điều lúc Với điều kiện hình thuật giải cho hành trình có chiều dài 14 hành trình tối ưu 13 Kết thuật giải Heuristic trường hợp lệch đơn vị so với kết tối ưu Trong đó, độ phức tạp thuật giải Heuristic 0(n2) TTNT Hình : Giải tốn sử dụng nguyên lý Greedy Tất nhiên, thuật giải theo kiểu Heuristic đôi lúc lại đưa kết không tốt, chí tệ trường hợp hình sau Bài toán phân việc – ứng dụng nguyên lý thứ tự Một công ty nhận hợp đồng gia công m chi tiết máy J1, J2, … Jm Công ty có n máy gia cơng P1, P2, … Pn Mọi chi tiết gia công máy Một gia công chi tiết máy, công việ tiếp tục lúc hồn thành, khơng thể bị cắt ngang Để gia công việc J1 máy ta cần dùng thời gian tương ứng t1 Nhiệm vụ công ty phải gia cơng xong tồn n chi tiết thời gian sớm TTNT Chúng ta xét tốn trường hợp có máy P1, P2, P3 công việc với thời gian t1=2, t2=5, t3=8, t4=1, t5=5, t6=1 ta có phương án phân cơng (L) hình sau: Theo hình này, thời điểm t=0, ta tiến hành gia công chi tiết J2 máy P1, J5 P2 J1 P3 Tại thời điểm t=2, cơng việc J1 hồn thành, máy P3 ta gia công tiếp chi tiết J4 Trong lúc đó, hai máy P1 P2 thực cơng việc … Sơ đồ phân việc theo hình gọi lược đồ GANTT Theo lược đồ này, ta thấy thời gian để hồn thành tồn cơng việc 12 Nhận xét cách cảm tính ta thấy phương án (L) vừa thực phương án khơng tốt Các máy P1 P2 có q nhiều thời gian rãnh Thuật tốn tìm phương án tối ưu L0 cho tốn theo kiểu vét cạn có độ phức tạp cỡ O(mn) (với m số máy n số công việc) Bây ta xét đến thuật giải Heuristic đơn giản (độ phức tạp O(n)) để giải toán Sắp xếp công việc theo thứ tự giảm dần thời gian gia công Lần lượt xếp việc theo thứ tự vào máy cịn dư nhiều thời gian Với tư tưởng vậy, ta có phương án L* sau: TTNT Rõ ràng phương án L* vừa thực phương án tối ưu trường hợp thời gian hồn thành 8, thời gian công việc J3 Ta hy vọng giải Heuristic đơn giản thuật giải tối ưu Nhưng tiếc thay, ta dễ dàng đưa trường hợp mà thuật giải Heuristic không đưa kết tối ưu Nếu gọi T* thời gian để gia công xong n chi tiết máy thuật giải Heuristic đưa T0 thời gian tối ưu người ta chứng minh , M số máy Với kết này, ta xác lập sai số mà phải gánh chịu dùng Heuristic thay tìm lời giải tối ưu Chẳng hạn với số máy (M=2) ta có , sai số cực đại mà trường hợp gánh chịu Theo công thức này, số máy lớn sai số lớn TTNT Trong trường hợp M lớn tỷ số 1/M xem Như vậy, sai số tối đa mà ta phải chịu T* ≤ 4/3 T0, nghĩa sai số tối đa 33% Tuy nhiên, khó tìm trường hợp mà sai số giá trị cực đại, dù trường hợp xấu Thuật giải Heuristic trường hợp rõ ràng cho lời giải tương đối tốt III CÁC PHƯƠNG PHÁP TÌM KIẾM HEURISTIC Qua phần trước tìm hiểu tổng quan ý tưởng thuật giải Heuristic (nguyên lý Greedy thứ tự) Trong mục này, sâu vào tìm hiểu số kỹ thuật tìm kiếm Heuristic – lớp toán quan trọng có nhiều ứng dụng thực tế III.1 Cấu trúc chung tốn tìm kiếm Để tiện lợi cho việc trình bày, ta dành chút thời gian để làm rõ "đối tượng" quan tâm mục Một cách chung nhất, nhiều vấn đề-bài tốn phức tạp có dạng "tìm đường đồ thị" hay nói cách hình thức "xuất phát từ đỉnh đồ thị, tìm đường hiệu đến đỉnh đó" Một phát biểu khác thường gặp dạng toán : Cho trước hai trạng thái T0 TG xây dựng chuỗi trạng thái T0, T1, T2, , Tn-1, Tn = TG cho : thỏa mãn điều kiện cho trước (thường nhỏ nhất) Trong đó, Ti thuộc tập hợp S (gọi khơng gian trạng thái – state space) bao gồm tất trạng thái có tốn cost(Ti-1, Ti) chi phí để biến đổi từ trạng thái Ti-1 sang trạng thái Ti Dĩ nhiên, từ trạng thái Ti ta có nhiều cách để biến đổi sang trạng thái Ti+1 Khi nói đến biến đổi cụ thể từ Ti-1 sang Ti ta dùng thuật ngữ hướng (với ngụ ý nói lựa chọn) Hình : Mơ hình chung vấn đề-bài tốn phải giải phương pháp tìm kiếm lời giải Khơng gian tìm kiếm tập hợp trạng thái - tập nút đồ thị Chi phí cần thiết để chuyển từ trạng thái T TTNT sang trạng thái Tk biểu diễn dạng số nằm cung nối hai nút tượng trưng cho hai trạng thái Đa số tốn thuộc dạng mà mơ tả biểu diễn dạng đồ thị Trong đó, trạng thái đỉnh đồ thị Tập hợp S bao gồm tất trạng thái tập hợp bao gồm tất đỉnh đồ thị Việc biến đổi từ trạng thái Ti-1 sang trạng thái Ti việc từ đỉnh đại diện cho Ti-1 sang đỉnh đại diện cho Ti theo cung nối hai đỉnh III.2 Tìm kiếm chiều sâu tìm kiếm chiều rộng Để bạn đọc hình dung cách cụ thể chất thuật giải Heuristic, thiết phải nắm vững hai chiến lược tìm kiếm tìm kiếm theo chiều sâu (Depth First Search) tìm kiếm theo chiều rộng (Breath First Search) Sở dĩ dùng từ chiến lược mà phương pháp thực tế, người ta chẳng vận dụng hai kiểm tìm kiếm cách trực tiếp mà khơng phải sửa đổi III.2.1 Tìm kiếm chiều sâu (Depth-First Search) Trong tìm kiếm theo chiều sâu, trạng thái (đỉnh) hành, ta chọn trạng thái (trong tập trạng thái biến đổi thành từ trạng thái tại) làm trạng thái hành lúc trạng thái hành trạng thái đích Trong trường hợp trạng thái hành, ta biến đổi thành trạng thái ta quay lui (backtracking) lại trạng thái trước trạng thái hành (trạng thái biến đổi thành trạng thái hành) để chọn đường khác Nếu trạng thái trước mà khơng thể biến đổi ta quay lui lại trạng thái trước Nếu quay lui đến trạng thái khởi đầu mà thất bại kết luận khơng có lời giải Hình ảnh sau minh họa hoạt động tìm kiếm theo chiều sâu TTNT Hình : Hình ảnh tìm kiếm chiều sâu Nó lưu ý "mở rộng" trạng thái chọn mà không "mở rộng" trạng thái khác (nút màu trắng hình vẽ) III.2.2 Tìm kiếm chiều rộng (Breath-First Search) Ngược lại với tìm kiếm theo kiểu chiều sâu, tìm kiếm chiều rộng mang hình ảnh vết dầu loang Từ trạng thái ban đầu, ta xây dựng tập hợp S bao gồm trạng thái (mà từ trạng thái ban đầu biến đổi thành) Sau đó, ứng với trạng thái Tk tập S, ta xây dựng tập Sk bao gồm trạng thái Tk bổ sung Sk vào S Quá trình lặp lại lúc S có chứa trạng thái kết thúc S không thay đổi sau bổ sung tất Sk ...TTNT CHƯƠNG : THUẬT TOÁN – THUẬT GIẢI I KHÁI NIỆM THUẬT TOÁN – THUẬT GIẢI II THUẬT GIẢI HEURISTIC III CÁC PHƯƠNG PHÁP TÌM KIẾM HEURISTIC III.1 Cấu... (best-first search) III.5 Thuật giải AT III.6 Thuật giải AKT III.7 Thuật giải A* III.8 Ví dụ minh họa hoạt động thuật giải A* III.9 Bàn luận A* III.10 Ứng dụng A* để giải toán Ta-canh III.11 Các... chấp nhận giải pháp gần tối ưu mà cần máy tính chạy vài ngày vài Các cách giải chấp nhận khơng hồn tồn đáp ứng đầy đủ tiêu chuẩn thuật toán thường gọi thuật giải Khái niệm mở rộng thuật toán mở

Ngày đăng: 18/10/2022, 22:56

HÌNH ẢNH LIÊN QUAN

Bạn có thể quan sát hình sau để thấy được quá trình chọn lựa. Theo nguyên lý Greedy, ta lấy tiêu chuẩn hành trình ngắn nhất của bài toán làm tiêu chuẩn cho chọn lựa cục bộ - Thuật toán và giải thuật
n có thể quan sát hình sau để thấy được quá trình chọn lựa. Theo nguyên lý Greedy, ta lấy tiêu chuẩn hành trình ngắn nhất của bài toán làm tiêu chuẩn cho chọn lựa cục bộ (Trang 4)
Theo hình này, tại thời điểm t=0, ta tiến hành gia công chi tiết J2 trên máy P1, J5 trên P2 và J1 tại P3 - Thuật toán và giải thuật
heo hình này, tại thời điểm t=0, ta tiến hành gia công chi tiết J2 trên máy P1, J5 trên P2 và J1 tại P3 (Trang 6)
đều có dạng "tìm đường đi trong đồ thị" hay nói một cách hình thức hơn là "xuất phát từ - Thuật toán và giải thuật
u có dạng "tìm đường đi trong đồ thị" hay nói một cách hình thức hơn là "xuất phát từ (Trang 8)
Hìn h: Hình ảnh của tìm kiếm chiều sâu. Nó chỉ lưu ý "mở rộng" trạng thái được chọn mà không "mở - Thuật toán và giải thuật
n h: Hình ảnh của tìm kiếm chiều sâu. Nó chỉ lưu ý "mở rộng" trạng thái được chọn mà không "mở (Trang 10)
rộng" các trạng thái khác (nút màu trắng trong hình vẽ). - Thuật toán và giải thuật
r ộng" các trạng thái khác (nút màu trắng trong hình vẽ) (Trang 10)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN