1. Trang chủ
  2. » Luận Văn - Báo Cáo

luận văn mô phỏng transistor đơn điện tử (set) sử dụng phương pháp hàm green

80 708 3

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 80
Dung lượng 3,19 MB

Nội dung

TRƯỜNG …………………. KHOA……………………….  Báo cáo tốt nghiệp Đề tài: MÔ PHỎNG TRANSISTOR ĐƠN ĐIỆN TỬ (SET) SỬ DỤNG PHƯƠNGPHÁP HÀM GREEN MỞ ĐẦU Bắt đầu từ thập kỷ 80 của thế kỷ XX, nền khoa học và công nghệ thế giới đã đặc biệt chú ý tới một hướng nghiên cứu: phát triển kỳ lạ và lý thú mà ngày nay được gọi là khoa học và công nghệ nano. Những năm 1990, những ứng dụng quan trọng của công nghệ nano đã gây chấn động trong giới khoa học và kể từ đó nhiều nhà khoa học đã lấy khoa học và công nghệ nano làm mục tiêu nghiên cứu và chế tạo của mình. Khoa học và công nghệ nano đã và đang là hướng phát triển ưu tiên số một của nhiều quốc gia trên thế giới. Trong những năm gần đây, Chính phủ Việt Nam – thông qua Bộ khoa học và Công nghệ, Bộ Giáo dục và Đào tạo – đã nhận thức khoa học và công nghệ nano là một lĩnh vực rất cần được ưu tiên phát triển và đang tập trung vào ba vấn đề lớn: đào tạo thế hệ các nhà khoa học, tăng cường cơ sở vật chất cho một số phòng thí nghiệm và đầu kinh phí cho những nghiên cứu trọng điểm của quốc gia. Phòng thí nghiệm công nghệ nano LNT Đại học Quốc gia Tp. Hồ Chí Minh khánh thành cuối năm 2006 đang tổ chức nghiên cứu và chế tạo thử nghiệm về công nghệ nano, đặc biệt là linh kiện vi điện tử và linh kiện điện tử nano. Kế đến, Khu công nghệ cao Tp. Hồ Chí Minh đang được xây dựng với những cơ sở vật chất ban đầu rất triển vọng. Nhiều công trình nghiên cứu về lĩnh vực nano đã và đang được thực hiện có kết quả. Khoa học và công nghệ nano về tương lai sẽ đóng một vai trò rất quan trọng trong các lĩnh vực vật lý, hoá học, vật liệu mới, điện tử, y học, cơ khí chế tạo, … Điện tử học nano – Nanoelectronics là một lĩnh vực hiện đang được nghiên cứu rất mạnh trên thế giới. Luận văn “Mô phỏng transistor đơn điện tử SET sử dụng phương pháp hàm Green” là một hướng nghiên cứu tương đối mới trong lĩnh vực công nghệ linh kiện điện tử nano. Mục tiêu của luận văn là nghiên cứu về những linh kiện điện tử đơn điện tử có ba điện cực được gọi là transistor đơn điện tử (SET – Single Electron Transistor). Cấu trúc của transistor đơn điện tử SET được xây dựng có dạng như của MOSFET truyền thống và được đề xuất thay thế cho MOSFET truyền thống trong tương lai. Transistor đơn điện tử SET là linh kiện đơn điện tử có khả năng 1 điều khiển chuyển động của từng điện tử, hoạt động dựa trên hiệu ứng đường hầm, kích thước rất nhỏ (thang nanomet) và tiêu tán công suất cực kỳ thấp. Với những đặc điểm nổi bật trên đã mở ra một hướng nghiên cứu linh kiện điện tử mới cho ứng dụng trong thiết kế vi mạch. Bên cạnh đó linh kiện điện tử SET có đặc trưng hoàn toàn khác liên quan đến dao động khóa Coulomb. Cấu trúc transistor đơn điện tử SET gồm một chấm lượng tử gọi là đảo “island” được bao quanh gồm ba điện cực: điện cực nguồn (S – Source), điện cực máng (D – Drain) và điện cực cổng (G – Gate). Điện cực nguồn S và điện cực máng D được ghép với chấm lượng tử bằng hai tiếp xúc đường hầm nên điện tử có thể từ các điện cực này xuyên hầm vào chấm hay ngược lại. Điện cực cổng G được cách ly với chấm lượng tử bởi lớp cách điện Silicon dioxide SiO 2 , lớp oxide cách điện ngăn cản không cho điện tử đi từ điện cực này vào chấm hay ngược lại. Luận văn sử dụng lý thuyết của hàm Green trạng thái không cân bằng (The Non-Equilibrium Green’s Function – NEGF) xây dựng hình toán học tính dòng qua transistor đơn điện tử SET. Từ hình toán học tính dòng qua transistor đơn điện tử SET, xây dựng nên bộ phỏng những đặc trưng dòng – thế cho transistor đơn điện tử SET dựa trên nền phần mềm MATLAB. Từ những kết quả phỏng xem xét ảnh hưởng các tham số kích thước, nhiệt độ, vật liệu làm chấm lượng tửđiện thế điều khiển ở điện cực cổng G, điện cực nguồn S và điện cực máng D lên đặc tuyến dòng – thế của linh kiện transistor đơn điện tử SET. Nội dung luận văn “Mô phỏng transistor đơn điện tử (SET) sử dụng phương pháp hàm Green” được trình bày gồm: • Lời mở đầu. • Chương 1: Tổng quan về linh kiện transistor đơn điện tử. • Chương 2: Xây dựng hình toán học tính dòng điện qua transistor đơn điện tử sử dụng phương pháp hàm Green. • Chương 3: phỏng sự vận chuyển điện tử trong transistor đơn điện tử. • Kết luận. • Tài liệu tham khảo. • Phụ lục. 2 Hiện nay để tiếp cận với quy trình chế tạo linh kiện điện tử có kích thước ở thang nanomet vẫn còn gặp nhiều khó khăn. Bên cạnh đó việc khai thác các tính chất vật lý của các vật liệu mới cho việc chế tạo linh kiện điện tử đưa vào hình tính toán xây dựng bộ phỏng linh kiện thực là vấn đề đặt ra hiện nay. phỏng là một công cụ quan trọng giúp những nhà khoa học có khả năng rút ngắn thời gian và giảm chi phí nghiên cứu một cách đáng kể. hình giới thiệu trong đề tài bị giới hạn khảo sát hoạt động truyền tải của từng điện tử ở điều kiện thế thiên áp và nhiệt độ thấp. Tuy đã rất cố gắng trong quá trình thực hiện đề tài, xong không tránh khỏi những thiếu sót, tác giả rất mong những ý kiến đóng góp quý báu của quý thầy giáo, cô giáo và các bạn đọc để tác giả có thể nghiên cứu sâu hơn, đi xa hơn trong lĩnh vực công nghệ linh kiện điện tử nano. 3 Chương 1 TỔNG QUAN VỀ LINH KIỆN TRANSISTOR ĐƠN ĐIỆN TỬ 1.1. TỪ VI ĐIỆN TỬ ĐẾN ĐIỆN TỬ NANO Khoa học và đời sống đòi hỏi có các thiết bị điện tử siêu nhỏ, tiêu tán công suất thấp, hiệu suất sử dụng năng lượng cao, hoạt động ổn định ở dải nhiệt độ rộng, trong môi trường có áp lực lớn hay chân không. Đó là động lực thúc đẩy mạnh mẽ những nghiên cứu về linh kiện điện tử [1, 3]. Từ những năm 1960 của thế kỷ XX có một công nghệ nổi trội, ảnh hưởng to lớn đến nhiều ngành công nghệ khác, làm thay đổi cả đời sống xã hội, đó là công nghệ vi điện tử. Nhờ có công nghệ vi điện tử mới có công nghệ thông tin, công nghệ thông tin đã làm cho xã hội trở thành xã hội thông tin, xuất hiện nền kinh tế tri thức, xu thế toàn cầu hoá. Một trong những thành tựu cực kỳ to lớn trong lĩnh vực chế tạo vi điện tử bán dẫn trong suốt ba thập kỷ qua dựa trên linh kiện transistor hiệu ứng trường MOSFET làm tăng mật độ tích hợp linh kiện trong chip số và bộ nhớ [1]. Những phát triển nhanh chóng của xã hội hiện nay đều liên quan đến sự phát triển của công nghệ vi điện tử, công nghệ mới từ gần bốn mươi năm qua luôn phát triển theo hàm mũ. Thật vậy, từ cuối những năm 1960, Gordon Moore người đồng sáng lập hãng Intel (Mỹ) đã đưa ra nhận xét, về sau người ta gọi là quy luật Moore: cứ 18 tháng số transistor trên một chip điện tử tăng lên gấp đôi [3, 6]. Cho đến nay, quy luật đó vẫn được thực tế nghiệm đúng. Số transistor tích hợp trên một chip tăng nhanh như vậy, tất nhiên là đi đôi với việc diện tích cần cho một transistor ở trên chip cũng giảm theo hàm mũ. 4 Hình 1.1: Quy luật Moore cho thấy số transistor trên một chip điện tử cứ 18 tháng tăng lên gấp đôi. Hình 1.2: Số transistor trên một chip điện tử tăng lên đi đôi với kích thước transistor giảm. Như vậy, theo quy luật Moore và đúng như diễn biến thực tế của công nghệ vi điện tử, kích thước một linh kiện điện tử trong mạch tích hợp đến nay đã nhỏ hơn micromet và nếu cứ theo đúng quy luật Moore thì đến năm 2010, kích 5 thước linh kiện chỉ vài phần trăm micromet. Theo dự báo của Hiệp hội Công nghệ bán dẫn quốc tế (ITRS – SIA’s International Technology Roadmap for Semiconductors) kích thước của transistor có thể giảm xuống dưới 100nm (cỡ 30nm đến 50nm), chiều dài của điện cực cổng G của MOSFET sẽ dưới 10nm đến năm 2014 (bảng 1.1) [6]. Thực tế hiện nay kích thước transistor đã giảm đến 45nm. Bảng 1.1: Dự báo các thế hệ công nghệ trích từ SIA’s ITRS [6] Năm 1999 2002 2005 2008 2011 2014 Thế hệ công nghệ (µm) 0,18 0,13 0,10 0,07 0,05 0,035 Độ dày lớp oxide cổng (nm) 1,9-2,5 1,5-1,9 1,0-1,5 0,8-1,2 0,6-0,8 0,5-0,6 Thế nguồn nuôi (V) 1,5-1,8 1,2-1,5 0,9-1,2 0,6-0,9 0,5-0,6 0,3-0,6 Đường kính nền (mm) 200 300 300 300 300 450 Mật độ transistor lôgic của MPU (cm 6,6M 18M 44M 109M 269M 664M - 2 ) Kích thước linh kiện cứ nhỏ đi mãi khi đạt đến thang nanomet như vậy thì bản thân linh kiện và mạch tích hợp gặp phải những vấn đề: - Kích thước linh kiện càng nhỏ thì việc chế tạo càng đòi hỏi tinh vi, chính xác và như vậy rất đắt tiền. Thực tế cho thấy trong thời gian qua, khi số linh kiện trên một chip điện tử cứ 18 tháng tăng gấp đôi thì giá thành của một nhà máy chế tạo chip cũng tăng lên theo hàm mũ: cứ 3 năm tăng lên gấp đôi. Tiền bán chip không bù lại được chi phí chế tạo dẫn đến bế tắc về kinh tế. - Về mặt kỹ thuật, khi kích thước linh kiện điện tử như transistor giảm đến một mức quá nhỏ nào đó thì bản thân linh kiện và mạch tích hợp gặp những vấn đề như: điện trường cao đánh thủng thác lũ tràn dòng làm hỏng luỹ tuyến linh kiện, tiêu tán nhiệt, vùng nghèo co lại dẫn đến xuyên hầm theo 6 cơ học lượng tử, các hiệu ứng lượng tử thể hiện mạnh, lớp oxide mỏng dưới cổng làm điện tử rò rỉ từ điện cực cổng đến điện cực máng, … linh kiện sẽ không làm việc như cũ được nữa. Khó khăn này của công nghệ vi điện tử là không thể vượt qua về mặt nguyên tắc. Việc khai thác hiệu ứng lượng tử trong vận chuyển hạt tải điện đang mở ra hướng phát triển mới cho các linh kiện điện tử kích thước nanomet. 1.2. LINH KIỆN ĐIỆN TỬ NANO Khi kích thước linh kiện điện tử đạt đến thang nanomet hay thang phân tử thì các tính chất của chất bán dẫn khối được thay thế bởi các tính chất của cơ học lượng tử. Những tính chất kèm theo các chất bán dẫn pha tạp ít ảnh hưởng đến hoạt động truyền tải hạt mang điện trong linh kiện, những hiệu ứng của cơ học lượng tử như lượng tử hoá năng lượng và hiệu ứng đường hầm trở nên có ý nghĩa. Đây cũng chính là ưu điểm nổi bật cho việc khai thác linh kiện điện tử mới với nguyên tắc hoạt động hoàn toàn khác dựa trên nền tảng cơ học lượng tử [3]. Do nhu cầu tăng mật độ linh kiện trên một chip điện tử trong tương lai những nhà nghiên cứu đã không ngừng đưa ra những hình lý thuyết chuẩn nhằm tạo nên nền tảng để nghiên cứu sâu linh kiện điện tử mới. Một trong các thuyết chuẩn làm nền cho hình phân tích linh kiện điện tử thang nanomet hay thang phân tử sau này đó là thuyết chính thống “Orthodox Theory”. 7 Hình 1.3: Phân loại linh kiện điện tử có kích thước nanomet. Thuyết chính thống được đề xuất bởi Kulik và Shekhter, họ đã đưa ra một quy luật đồng nhất đơn giản nhưng rất hiệu quả trong việc khai thác linh kiện điện tử ở thang nanomet hoạt động dựa vào những hiệu ứng cơ học lượng tử. Khắc phục những trở ngại phát sinh trong quá trình thu nhỏ kích thước linh kiện điện tử bán dẫn khối, một số nghiên cứu gần đây đã đưa ra nhiều hình linh kiện thang nanomet có khả năng thay thế cho linh kiện CMOS trong thiết kế vi mạch như: - Tiếp tục con đường vật lý chất rắn dùng các vật liệu bán dẫn làm các linh kiện hoạt động theo những nguyên lý mới, dựa theo hiệu ứng lượng tử để 8 đạt đến kích thước nano. Hiện nay, bắt đầu xuất hiện các linh kiện như: Chấm lượng tử (Quantum Dot – QD), transistor đơn điện tử (Single Electron Transistor – SET), linh kiện đường hầm cộng hưởng (Resonant Tunneling Device – RTD), có thể làm linh kiện lai giữa vi điện tửđiện tử nano là transistor đường hầm cộng hưởng (Resonant Tunneling Transistor – RTT) gồm transistor hiệu ứng trường FET ghép với nhiều linh kiện đường hầm cộng hưởng RTD. Hoặc cũng theo con đường của vật lý chất rắn nhưng chuyển sang điều khiển spin của điện tử bằng điện trường: Spin điện tử học. - Dùng phân tử để làm linh kiện, gọi là điện tử học kích thước phân tử (Molecular Scale Electronics) đại điệntransistor phân tử (Molecular transistors – MTs). Cũng là kích thước nano, cũng là tính chất lượng tử nhưng thuộc thế giới phân tử, có nhiều đặc thù mà thế giới vật rắn không có [3]. Điện tử phân tử là cách tiếp cận tương đối mới có thể thay đổi cả nguyên tắc hoạt động lẫn vật liệu được sử dụng trong linh kiện điện tử phân tử. Hai thách thức có ý nghĩa là phải chế tạo ra các cấu trúc phân tử hoạt động giống như chuyển mạch điện, như diode hay transistor và phải lắp ráp các phân tử này thành những cấu trúc mở rộng chính xác với độ tin cậy cao. 1.3. HOẠT ĐỘNG TRUYỀN TẢI ĐIỆN TỬ TRONG CÁC HỆ THỐNG THANG NANOMET Đối với các hệ vĩ độ dẫn điện G tuân theo định luật Ohm. Xét vật dẫn dạng tấm chữ nhật có độ dẫn điện G tỉ lệ thuận với bề rộng W và tỉ lệ nghịch với bề dài L của vật dẫn, được biểu diễn theo công thức sau: L W G σ = 1.1 Với σ : dẫn suất của vật dẫn được đo bằng mật độ hạt mang điện và đường dẫn tự do trung bình [7, 15]. Nếu kích thước của hệ bị thu nhỏ cỡ bước sóng de Broglie, các quy luật của cơ học lượng tử bắt đầu xuất hiện làm thay đổi hầu hết các tính chất điện tử của hệ. Khi vật dẫn có kích thước ở thang nanomet hay thang phân tử thì chuyển động của điện tử không còn tuân theo định luật Ohm [15]. Một số nguyên nhân 9 [...]... điện tử thực vẫn còn trong giai đoạn nghiên cứu 18 Chương 2 XÂY DỰNG HÌNH TOÁN HỌC TÍNH DÒNG ĐIỆN QUA TRANSISTOR ĐƠN ĐIỆN TỬ SỬ DỤNG PHƯƠNG PHÁP HÀM GREEN 2.1 CƠ SỞ XUYÊN HẦM CỦA ĐIỆN TỬ TRONG LINH KIỆN TRANSISTOR ĐƠN ĐIỆN TỬ 2.1.1 Cấu trúc và nguyên lý hoạt động của transistor đơn điện tử VG Gate CG Source CS, ΓS Island V Drain CD, ΓD Hình 2.1: Cấu trúc của transistor đơn điện tử SET Cấu trúc transistor. .. tải điện tử trong transistor đơn điện tử SET 23 Ở hình 2.2 (b) tả trường hợp μS > μN+1 > μD, điện tử thứ (N+1) di chuyển từ điện cực nguồn S xuyên hầm vào trong chấm lượng tử, sau đó xuyên hầm qua điện cực máng D Quá trình trên cho phép dòng điện tử chảy qua chấm lượng nhưng không làm thay đổi trạng thái tích điện của chấm với N điện tử Do ảnh hưởng tích điện của các tụ điện giữa chấm lượng tử và điện. .. tích điện do các tụ ghép với chấm lượng tử với các điện cực Một lần nữa quan sát năng lượng bổ sung điện tích tạo khe năng lượng trong chấm lượng tử gần mức năng lượng Fermi μS và μD của điện cực nguồn S và điện cực máng D 2.2.1 hình thông số của transistor đơn điện tử Cấu trúc transistor đơn điện tử SET gồm một chấm lượng tử được bao quanh gồm ba điện cực: điện cực nguồn S, điện cực máng D và điện. .. tử được ghép với điện cực nguồn S và điện cực máng D bởi các rào thế năng xuyên hầm (nghĩa là ta đang xét một điện tử hoặc trên chấm lượng tử hoặc trên điện cực) và số điện tử trong chấm lượng tử có giá trị N xác định Giả sử tương tác giữa điện tử nói trên với các điện tử trong chấm lượng tử hay các điện tử tại các điện cực được thông số hoá bởi giá trị điện dung tổng CT Cũng giả sử rằng CT không phụ... của cơ học lượng tử Trong đó, điện tử có thể xuất hiện trong chấm lượng tử khi năng lượng của điện tử thấp hơn độ cao rào thế năng nói cách khác xác suất tìm thấy điện tử trong chấm lượng tử là khác không Do đó, để giải bài toán tính dòng qua linh kiện ta sử dụng phương pháp lý thuyết hàm Green trạng thái không cân bằng (The Non-Equilibrium Green s Function – NEGF) và sử dụng các phương trình trạng... thể, các điện tử linh động trong đảo tạo thành đám mây với kích thước nhỏ hơn đảo Đám mây điện tử bị bao quanh bởi vùng nghèo do đó điện tử trong đám mây bị đẩy từ bề mặt về tập trung trên biên của đảo ngăn cản các điện tử vào hay ra khỏi đảo Điện trường bên trong đảo phụ thuộc vào số điện tử bị giam giữ và số điện tử đi vào đảo do tác dụng của ngoại lực F Trong linh kiện đơn điện tử để một điện tử đi... hầm của điện tử Trong transistor đơn điện tử SET, các tiếp xúc đường hầm tách chấm lượng tử thông qua điện cực nguồn S và điện cực máng D Do đó, ở chế độ chấm lượng tử tốc độ xuyên hầm của điện tử giữa chấm lượng tửđiện cực nguồn S, điện cực máng D được biểu diễn bởi ΓS, ΓD Theo thuyết chính thống như đề cập ở phần trên, tốc độ xuyên hầm của điện tử qua rào thay đổi ứng với mỗi mức lượng tử trên... chấm lượng tử, được xác định bằng số điện tử xuyên hầm trong một đơn vị thời gian Do đó, đơn vị để xác định tốc độ xuyên hầm của điện tử là Hezt (Hz) Nếu ΓS > ΓD) thì kết quả xuất hiện dòng điện tử e ΓD chảy qua transistor đơn điện tử SET Nói cách khác, transistor đơn điện tử SET 29 đang ở trạng thái mở Theo thực nghiệm thông lượng dòng qua một mức năng lượng của chấm lượng tử thường... điện thế thiên áp, điện thế cực cổng, tốc độ xuyên hầm qua các rào thế năng, nhiệt độ hoạt động, nhiễu của môi trường xung quanh, … Do đó, chúng ta sử dụng phương pháp hàm Green trạng thái không cân bằng (The Non-Equilibrium Green s Function – NEGF) để giải quyết bài toán tính dòng qua transistor đơn điện tử SET [12, 13, 14, 15] Quá trình chảy của dòng điện qua transistor đơn điện tử SET đòi hỏi theo... đó, điện cực nguồn S và điện cực máng D được ghép với chấm lượng tử bằng hai tiếp xúc đường hầm nên điện tử có thể từ các điện cực này xuyên hầm vào chấm hay ngược lại Điện cực còn lại là điện cực cổng G được cách ly với chấm lượng tử bởi lớp cách điện Silicon dioxide SiO2, lớp oxide cách điện ngăn cản không cho điện tử từ điện cực này đi vào chấm bằng xuyên hầm lượng tử hay ngược lại Do đó, điện tử

Ngày đăng: 12/03/2014, 12:12

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN