1. Trang chủ
  2. » Luận Văn - Báo Cáo

Tính toán điều khiển Robot công nghiệp

45 1,6K 3

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 45
Dung lượng 1,17 MB

Nội dung

Tính toán điều khiển Robot công nghiệp

1 LỜI NÓI ĐẦU 3 CHƯƠNG I . GIẢI BÀI TOÁN ĐỘNG HỌC 4 1.1. Giải bài toán động học thuận 4 1.1.1. Cơ sở lý thuyết 4 1.1.2. Thiết lập phương trình động học thuận cho robot RRR. 9 a. Tìm các ma trận biến đổi 9 b. Xác định vị trí và hướng của bàn kẹp 10 c. Xác định vận tốc của điểm tác động cuối so với hệ cố định 11 d. Vận tốc góc của mỗi khâu so với hệ cố định 11 e. Các đồ thị thể hiện vị trí, vận tốc điểm tác động cuối E 11 1.2. Giải bài toán động học ngƣợc 12 1.2.1. Giải bài toán động học ngược bằng phương pháp giải tích 13 a. Cơ sở lý thuyết 13 b. Áp dụng giải bài toán ngược cho robot RRR 14 1.2.2. Giải bài toán ngược bằng phương pháp số 17 a. Cơ sở lý thuyết 17 b. Áp dụng giải bài toán cho robot RRR 19 CHƯƠNG II. GIẢI BÀI TOÁN TĨNH HỌC ROBOT 21 2.1. Cơ sở lý thuyết 21 2.2. Áp dụng cho Robot RRR 22 CHƯƠNG III. THIẾT KẾ QUỸ ĐẠO CHUYỂN ĐỘNG CHO ROBOT 27 3.1 Giới thiệu và cơ sở thiết kế quỹ đạo 27 3.2. Tính toán thiết kế quỹ đạo chuyển động 27 3.2.1 Thiết kế quỹ đạo trong không gian khớp 27 3.2.2. Thiết kế quỹ đạo trong không gian làm việc 29 a. Quỹ đạo của điểm tác động cuối theo đường thẳng từ A đến B trong t c (s) 30 b. Thiết kế quỹ đạo điểm tác động tác động cuối di chuyển theo đường tròn từ A đến B trong   c ts lấy AB làm đường kính. 32 CHƯƠNG IV. ĐỘNG LỰC HỌC ROBOT 34 2 4.1. Cơ sở lý thuyết 34 4.2. Áp dụng tìm phƣơng trình vi phân cho Robot RRR 36 4.2.2. Bảng tham số động học 36 4.2.3. Các phương trình vi phân 36 III. ĐIỀU KHIỂN ROBOT 37 5.1. Điều khiển phản hồi và điều khiển vòng kín. 37 5.2. Thiết kế bộ điều khiển PID 38 5.3. Thiết kế bộ điều khiển trong không gian khớp 40 KẾT LUẬN 44 TÀI LIỆU THAM KHẢO 45 3 LỜI NÓI ĐẦU Khi xét về vấn đề Robot chúng ta đặt ra các bài toán: động học Robot, động lực học Robot và điều khiển Robot. Đây là những bước cơ sở ban đầu hết sức quan trọng trước khi thiết kế Robot. Với sự phát triển như vũ bão của công nghệ thông tin như ngày này, rất nhiều các lĩnh vực trong cơ khí đã tận dụng được sự phát triển này để tạo ra những bước nhảy vọt, rong đó có công nghiệp Robot. Trên cơ sở đó, môn học Robotics đã mang lại cho sinh viên những kiến thức vô cùng quan trọng cho sinh viên chúng em. Bên cạnh đó, nó cũng tạo ra một cơ hội để sinh viên được tiếp cận với những phần mềm tính toán, mô phỏng phổ biến trên thế giới hiện nay như Maple và Matlab. Để thực hiện được bài tập lớn này, em xin chân thành cảm ơn thầy giáo, PGS.TS Phan Bùi Khôi đã tận tình, chu đáo dạy học trên lớp. Em xin chân thành cảm ơn thầy. 4 CHƢƠNG I . GIẢI BÀI TOÁN ĐỘNG HỌC 1.1. Giải bài toán động học thuận 1.1.1. Cơ sở lý thuyết Vị trí mỗi khâu trong không gian được xác định bởi vị trí một điểm định vị và hướng của khâu đó đối với một hệ quy chiếu đã chọn. Điểm định vị là một điểm xác định nào đó của khâu, thông thường trong động lực học ta hay lấy khối tâm của khâu đó làm điểm định vị. Hướng của khâu được xác định bằng ma trận cosin chỉ hướng hoặc bằng các tọa độ suy rộng xác địnhvị trí của vật rắn quay quanh một điểm. Động học robot nghiên cứu chuyển động của các khâu của robot về phương diện hình học, không quan tâm đến các lực và momen gây ra chuyển động.Động học robot là bài toán qua trọng phục vụ tính toán và thiết kế robot.Nhiệm vụ chủ yếu của bài toán động học thuận là xác định vị trí và hương của bàn kẹp dưới dạng hàm của biến khớp. Các phương pháp ma trận 4x4 và các phương pháp ma trận 3x3 hay được sử dụng trong phân tích động học robot. Hai phương pháp ma trận 4x4 phổ biến là phương pháp ma trận Denavit-Hartenberg và phương pháp ma trận Craig. Trong báo cáo này chúng em trình bày và áp dụng phương pháp ma trận Denavit-Hartenberg để tính toán động học robot. Giải bài toán động học thuận robot công nghiệp bằng phương pháp ma trận Denavit- Hartenberg Cách xác định các trục cuả hệ tọa độ khớp. Đối với robot công nghiệp ,Denavit-Hartenberg đã đưa ra cách chọn các hệ trục tọa độ có gốc tại khớp thứ i như sau: Trục 1i z  được chọn dọc theo hướng của trục khớp động thứ i. Trục 1i x  được chọn dọc theo đường vuông góc chung của 2 trục 2i z  và 1i z  hương đi từ trục 2i z  sang trục 1i z  . Nếu trục 1i z  cắt trục 2i z  thì hướng của trục 1i x  được chọn tùy ý miễn là vuông góc với trục 1i z  .Khi 2 trục 2i z  và 1i z  song song với nhau, giữa 2 trục này có nhiều đường vuông góc chung , ta có thể chọn trục 1i x  hướng theo pháp tuyến chung nào cũng được. Gốc tọa độ 1i O  được chọn tại giao điểm cuả trục 1i x  và trục 1i z  . Trục 1i y  được chọn sao cho hệ 1 ( x ) i O yz  là hệ quy chiếu thuận. 5 Hệ tọa độ 1 ( x ) i O yz  được xác định như trên trong một số tài liệu được quy ước là hệ tọa độ khớp. Chú ý: Với cách chọn hệ tọa độ như trên , đôi khi hệ tọa độ khớp 1 ( x ) i O yz  không được một cách duy nhất. vì vậy, ta có một số bổ sung thích hợp như sau. Đối với hệ tọa độ 0 ( x )O yz theo quy ước trên ta mới chỉ chọn được trục 0 z , còn trục 0 x chưa có trong quy ước trên.Ta có thể chọn trục 0 x một cách tùy ý, miễn là 0 x vuông góc với 0 z . Đối với hệ tọa độ ( x ) n O yz , do không có khớp (n+1) nên theo quy ước trên ta không xác định n z . Trục n z không được xác định duy nhất, trong khi trục n x lại được chọn theo đường pháp tuyến của trục 1n z  . Trong trường hợp này, nếu khớp n là khớp quay, ta có thể chọn trục n z song song trục 1n z  . Ngòai ra ta có thể chọn tùy ý sao cho hợp lý. Khi khớp thứ i là tịnh tiến, về nguyên tắc ta có thể chọn trục 1i z  một cách tùy ý. Tuy nhiên trong nhiều trường hợp người ta thường chọn trục 1i z  dọc theo trục cuả khớp tịnh tiến này. Hình 1.1.diễn các thông số Denavit-Hartenberg giữa các trục hệ tọa độ Các tham số động học Denavit-Hartenberg 6 Vị trí của hệ toạ độ khớp (Oxyz) i đối với hệ tọa độ khớp (Oxyz) i-1 được 4 tham số Denavit-haartenderg d i , 𝜃 𝑖 , a i , 𝛼 𝑖 như sau: i d dịch chuyển tịnh tiến dọc theo trục 1i z  để gốc tọa độ 1i O  chuyển đến ' i O giao điểm của trục i x và trục 1i z  . i θ : góc quay quanh trục 1i z  để trục 1i x  chuyển đến trục ' i x ( ' i x // i x ). i a : dịch chuyển tịnh tiến theo dọc trục i x để điểm ' i O chuyển đến điểm i O . i α : góc quay quanh trục i x sao cho trục ' 1i z  ( ' 1i z  // 1i z  ). Chuyển đến trục i z . Do hệ trục tọa độ 1 ( xyz) i O  gắn liền vào khâu thứ i-1 , còn hệ trục tọa độ ( xyz) i O gắn liền vào khâu thứ i , cho nên vị trí cuả khâu thứ i đối với khâu thứ i-1, được xác định bới 4 tham số Denavit-hartenberg. Trong 4 tham số trên, các tham số i a và i α luôn luôn là các hằng số , độ lớn của chúng phụ thuộc vào hình dáng và sự ghép nối các khâu thứ i-1 và thứ i. Hai tham số còn lại i θ và i d một là hằng số, một là biến số phụ thuộc vào khớp i là khớp quay hay khớp tịnh tiến.Khi khớp i là khớp quay thì i θ là biến, còn i d là hằng số. Khi khớp i là khớp tịnh tiến thì i d là biến, còn i θ là hằng số. Chú ý về việc xác định hệ tọa độ khớp tại khớp tịnh tiến.Trong trường hợp khớp i là khớp tịnh tiến, về nguyên tắc ta có thể chọn trục 1i z  một cách tùy ý, do đó việc xác định các tham số Denavit-Hartenberg phụ thuộc vào việc chọn hệ trục tọa độ. Ma trận của phép biến đổi, kí hiệu là i H , là tích của 4 na trận biến đổi cơ bản,và có dạng như sau: cos( ) sin( )cos( ) sin( )sin( ) cos( ) sin( ) cos( )cos( ) cos( )sin( ) sin( ) 0 sin( ) cos( ) 0 0 0 1 i i i i i i i i i i i i i i i i i θ θ α θ α a θ θ θ α θ α a θ α α d          H (1.1) Ma trận i H được xác định bởi công thức (1.1) được gọi là ma trận Denavit-Hartenberg địa phương. Phương trình xác định vị trí khâu thao tác (bàn kẹp) cuả robot. Xét mô hình cơ học của một robot n khâu động như hình vẽ: 7 Hình 1.2. Robot n khâu Theo nguyên tắc nêu trên, ta thiết lập được hệ trục tọa độ gắn liền với giá cố định và hệ tọa độ gắn liền với các vật.Gọi 0 R là hệ quy chiếu 0 ( xyz)O gắn liền với giá cố định, hệ quy chiếu ( xyz) ii RO gắn liền với khâu thứ i.Ma trận 1i i H  cho ta biết vị trí và hướng của khâu i đối với hệ quy chiếu 1i R  gắn vào khâu thứ i-1. Từ đó suy ra ma trận Denavit-Hartenberg i H cho biết vị trí của hệ quy chiếu ( xyz) ii RO đối với hệ quy chiếu 11 ( xyz) ii RO   .Áp dụng liên tiếp các phép biến đổi đối với robot n khâu, ta có: 0 1 2 3 n D H H H H (1.2)   0 01 nE T n     Ar D `(1.3) Ma trận n D cho biết vị trí của điểm tác động cuối E và hướng cuả khâu thao tác (bàn kẹp) của robot đối với hệ quy chiếu cố định 0 R Như vậy khi biết được các đặc tính hình học cuả các khâu và quy luật chuyển động của các khớp là ta có thể xác định được vị trí và hướng của bàn kẹp. Xác định vận tốc, gia tốc điểm tác động cuối và vận tốc góc, gia tốc góc các khâu cuả robot bằng phương pháp trực tiếp. Vận tốc và gia tốc dài của bàn kẹp có thể dễ dàng suy ra từ đạo hàm vector tọa độ (0) E r 8 Vận tốc điểm thao tác:                 0 0 0 0 0 0 0 0 0 ,: E R EE Ex Ey E Ez E d x dt v dd hay v y dt dt v d z dt                vr (1.4) Gia tốc điểm thao tác:                 0 0 00 0 0 00 0 ,: Ex R E Ey Ez Ex E Ey Ez d v dt a dd hay a v dt dt a d v dt               av (1.5) Ta có thể tính trực tiếp vận tốc góc khâu thứ i của robot dựa trên công thức tính vận tốc góc vật rắn thông qua ma trận cosin chỉ hướng như sau:       0 0 T ii i T i ii   ω A A ω A A   (1.6) Từ (1.6) suy ra biểu thức vận tốc góc khâu thứ i của robot. Áp dụng định nghĩa gia tốc góc của vật rắn, khi biết vận tốc góc của các khâi của robot ta có thể tính gia tốc góc các khâu của robot theo công thức sau: 0 00 R R B R B d dt αω   (1.7) 9 1.1.2. Thiết lập phƣơng trình động học thuận cho robot RRR. Hình 1.3. Đặt các trục tọa độ cho robot RRR Thiết lập bảng động học DH. Từ hình vẽ ta tìm được bảng động học: i d , i θ , i a , i α Khâu i θ i d i a i α 1 1 q 0 1 a 2 π 2 2 q 0 2 a 0 3 3 q 0 3 a 0 a. Tìm các ma trận biến đổi Dựa vào công thức (1.1) ở trên ta thiết lập các ma trận Denavit-Hartenberg H i như sau: 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 C S a C S C a S         H 2 2 2 2 2 2 2 2 2 0 0 0 1 0 0 0 0 0 1 C S a C S C a S         H 3 3 3 3 3 3 3 3 3 0 0 0 1 0 0 0 0 0 1 C S a C S C a S         H 10 Dựa vào (1.2) ta có ma trận Denavit-Hartenberg của khâu thao tác đối với khâu 0 như sau: 1 23 1 23 1 1 3 23 2 2 1 1 23 1 23 1 1 3 23 2 2 1 3 23 23 3 23 2 2 () () 0 0 0 0 1 C C C S S C a C a C a S C S S C S a C a C a S C a S a S                D (1.8) b. Xác định vị trí và hướng của bàn kẹp Vị trí của khâu thao tác (bàn kẹp) được xác định trong hệ tọa độ cố định R 0 được xác định bởi điểm E (điểm tác động cuối) và hướng của khâu thao tác. Theo (1.8) ta có: 1 3 23 2 2 1 1 3 23 2 2 1 3 23 2 2 () () E C a C a C a S a C a C a a S a S           x (1.9) Ma trận cosin chỉ hướng (xác định hướng của bàn kẹp) xác định từ ma trận 3 T như sau: 1 23 1 23 1 3 1 23 1 23 1 23 23 0 C C C S S S C S S C SC          A (1.10) Xác định hướng của bàn kẹp: Sử dụng phép quay Roll-Pitch-Yaw trong phép quay hệ quy chiếu cố định 0 R sang hệ quy chiếu n R thì ta có ma trận cosin chỉ hướng RPY, như sau:                                                           cos cos cos sin sin sin cos cos sin cos sin sin sin cos sin sin sin cos cos sin sin cos cos sin sin cos sin cos cos φ θ φ θ ψ φ ψ φ θ ψ φ ψ φ θ φ θ ψ φ ψ φ θ ψ φ ψ θ θ ψ θ ψ          R [...]... , robot có cấu trúc động học cân bằng hay cấu trúc chuẩn.Phương trình (2.1) có thể có nghiệm duy nhất phụ thuộc vào cấu trúc của robot - Khi m < n , robot có cấu trúc dư dẫn động Số toạ độ suy rộng khớp qi lớn hơn số tọa độ suy rộng khâu thao tác xj cần xác định Bài toán có nhiều nghiệm, để giải bài toán có thể đưa thêm vào các điều kiện phụ như là: điều kiện về công nghệ, điều kiện về cơ học, các điều. .. hệ cố định 1.2 Giải bài toán động học ngƣợc Bài toán động học ngược có ý nghĩa đặc biệt quan trọng trong lập trình và điều khiển chuyển động của robot Bởi lẽ, trong thực tế thường phải điều khiển robot sao cho bàn kẹp di chuyển tới các vị trí nhất định trong không gian thao tác theo một quy luật nào đó Ta cần xác định các giá trị biến khớp tương ứng với vị trí và hướng của robot theo yêu cầu đó Đây... các điều kiện về toán học…để đưa bài toán về bài toán cấu trúc động học cân bằng, giải bài toán bằng phương pháp ma trận tựa nghịch đảo, trong đó số phương trình nhỏ hơn số ẩn - Khi m > n , robot có số toạ độ suy rộng khớp ít hơn số toạ độ suy rộng khâu thao tác, phương trình (2.1) không giải được Để bài toán có nghiệm, ta cần đưa thêm vào các điều kiện ràng buộc, tuy nhiên đây là bài toán không có nhiều... khớp động thứ 3 26 CHƢƠNG III THIẾT KẾ QUỸ ĐẠO CHUYỂN ĐỘNG CHO ROBOT Chọn 2 điểm A, B bất kỳ trong không gian làm việc của Robot Thiết kế quỹ đạo chuyển động Robot ( có thể chọn quỹ đạo của đa thức bậc 1, 2, 3) 3.1 Giới thiệu và cơ sở thiết kế quỹ đạo Thiết kế quỹ đạo chuyển động của robot có liên quan mật thiết đến bài toán điều khiển robot di chuyển từ vị trí này đến vị trí khác trong không gian... CHƢƠNG IV ĐỘNG LỰC HỌC ROBOT 4.1 Cơ sở lý thuyết Trong tính toán động học robot, để xác định vị trí của các khâu ta chỉ cần sử dụng hệ tọa độ cố định và hệ tọa độ khớp Trong bài toán động lực học robot ta cần thêm một hệ tọa độ nữa là hệ tọa độ khâu Hệ tọa độ khâu là hệ quy chiếu gắn với vật rắn, thường có gốc trùng với khối tâm Ci của vật rắn, các trục hướng theo các trục quán tính chính của vật rắn... phương pháp giải bài toán động học ngược Việc đi tìm nghiệm của bài toán động học ngược có ý nghĩa rất quan trọng trong lập trình và điều khiển robot Tuy nhiên, việc này khá khó khăn và hiện chưa có phương pháp tổng quát nào để giải quyết vấn đề này một cách thật hiệu quả Có hai nhóm phương pháp hay được sử dụng là : - Nhóm phương pháp giải tích - Nhóm phương pháp số 1.2.1 Giải bài toán động học ngƣợc... quỹ đạo được thiết kế là các đại lượng đặt cho hệ thống điều khiển vị trí của robot Do đó độ chính xác của quỹ đạo sẽ ảnh hưởng đến chất lượng di chuyển của robot Yêu cầu thiết kế quỹ đạo chuyển động của robot là: + Khâu chấp hành phải đảm bảo đi qua lần lượt các điểm trong không gian làm việc hoặc di chuyển theo một quỹ đạo xác định + Quỹ đạo của robot phải là đường liên tục về vị trí trong một khoảng... gia tốc góc của biến khớp 1.2.2 Giải bài toán ngƣợc bằng phƣơng pháp số a Cơ sở lý thuyết Nhìn chung, các phương pháp số có thể giải được bài toán động học ngược một cách tổng quát, tính tự động hoá cao Tuy nhiên, trong thực tế, việc tìm lời giải bằng phương pháp này lại gặp khó khăn như thời gian tính toán lâu do gặp phải hệ phương trình siêu việt, hoặc vì tính đa trị của lời giải,… Dưới đây, ta sẽ... ma trận li tâm – Coriolis   Thành phần C  q, q  q đại diện cho lực quán tính ly tâm và quán tính Coriolis tác dụng lên robot 4.2 Áp dụng tìm phƣơng trình vi phân cho Robot RRR 4.2.2 Bảng tham số động học Khâu 1 2 3 Vị trí trọng tâm 𝑥𝑐 𝑦𝑐 𝑧𝑐 0 0 lC1 0 0 lC 2 0 0 lC 3 Khối lượng 𝑚1 𝑚2 𝑚3 𝐼 𝑥𝑥 0 0 0 Ma trận mômen quán tính 𝐼 𝑦𝑦 𝐼 𝑧𝑧 𝐼 𝑥𝑦 𝐼 𝑦𝑧 𝐼 𝑧𝑥 0 0 𝐼1𝑦 𝐼1𝑧 0 0 0 𝐼2𝑦 𝐼2𝑧 0 0 0 𝐼3𝑦 𝐼3𝑧 0 4.2.3... quả của quá trình này ta được  q0  q0 (1.38)   Biết được q0 thay vào (1.29) và (1.32) để tính q0 , q0 b Áp dụng giải bài toán cho robot RRR Sử dụng phương pháp lặp Newton-Raphson ta tìm giá trị của vectơ q0 Xem chương trình code viết trên MATLAB ở phần phụ lục Lấy phương trình điểm tác động cuối như bài toán giải bằng phương pháp giải tích, ta có kết quả góc quay của các tọa độ suy rộng như sau: . 36 III. ĐIỀU KHIỂN ROBOT 37 5.1. Điều khiển phản hồi và điều khiển vòng kín. 37 5.2. Thiết kế bộ điều khiển PID 38 5.3. Thiết kế bộ điều khiển trong. bài toán có thể đưa thêm vào các điều kiện phụ như là: điều kiện về công nghệ, điều kiện về cơ học, các điều kiện về toán học…để đưa bài toán về bài toán

Ngày đăng: 11/03/2014, 22:42

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. Phan Bùi Khôi, Bài giảng Robotics. Trường Đại học Bách khoa Hà Nội, 2009 Sách, tạp chí
Tiêu đề: Bài giảng Robotics
2. Nguyễn Thiện Phúc, Robot công nghiệp. NXB Khoa học và Kỹ thuật, 2002 Sách, tạp chí
Tiêu đề: Robot công nghiệp
Nhà XB: NXB Khoa học và Kỹ thuật
3. Nguyễn Văn Khang, Chu Anh Mỳ, Cơ sở Robot công nghiệp. NXB Giáo dục Việt Nam, 2011 Sách, tạp chí
Tiêu đề: Cơ sở Robot công nghiệp
Nhà XB: NXB Giáo dục Việt Nam
4. Lung Wen Tsai, Robot Analysis, The Machenics of Serial And Parallel Manipulator, NewYork, 1999 Sách, tạp chí
Tiêu đề: Robot Analysis, The Machenics of Serial And Parallel Manipulator
5. Nguyễn Doãn Phước, Lý thuyết điều khiển tuyến tính. NXB Khao học và Kỹ thuật, Hà Nội, 2009 Sách, tạp chí
Tiêu đề: Lý thuyết điều khiển tuyến tính
Nhà XB: NXB Khao học và Kỹ thuật
6. Nguyễn Phùng Quang, Nguyễn Phùng Quang, Matlab &amp; Simulink dành cho kỹ sư điều khiển tự động, NXB Khoa học kỹ thuật, 2003 Sách, tạp chí
Tiêu đề: Matlab & Simulink dành cho kỹ sư điều khiển tự động
Nhà XB: NXB Khoa học kỹ thuật

HÌNH ẢNH LIÊN QUAN

Hình 1.1.diễn các thơng số Denavit-Hartenberg giữa các trục hệ tọa độ - Tính toán điều khiển Robot công nghiệp
Hình 1.1.di ễn các thơng số Denavit-Hartenberg giữa các trục hệ tọa độ (Trang 5)
Hình 1.1.diễn các thông số Denavit-Hartenberg giữa các trục hệ tọa độ - Tính toán điều khiển Robot công nghiệp
Hình 1.1.di ễn các thông số Denavit-Hartenberg giữa các trục hệ tọa độ (Trang 5)
Hình 1.2. Robot n khâu - Tính toán điều khiển Robot công nghiệp
Hình 1.2. Robot n khâu (Trang 7)
Hình 1.2. Robot n khâu - Tính toán điều khiển Robot công nghiệp
Hình 1.2. Robot n khâu (Trang 7)
Thiết lập bảng động học DH. - Tính toán điều khiển Robot công nghiệp
hi ết lập bảng động học DH (Trang 9)
Hình 1.3. Đặt các trục tọa độ cho robot RRR - Tính toán điều khiển Robot công nghiệp
Hình 1.3. Đặt các trục tọa độ cho robot RRR (Trang 9)
Hình 1.3.  Đặt các trục tọa độ cho robot RRR - Tính toán điều khiển Robot công nghiệp
Hình 1.3. Đặt các trục tọa độ cho robot RRR (Trang 9)
π φ q θ   q  q ψ  - Tính toán điều khiển Robot công nghiệp
q θ   q  q ψ  (Trang 11)
Hình 1.4. Phép quay Roll – Pitch – Yaw - Tính toán điều khiển Robot công nghiệp
Hình 1.4. Phép quay Roll – Pitch – Yaw (Trang 11)
Hình 1.4. Phép quay Roll – Pitch – Yaw - Tính toán điều khiển Robot công nghiệp
Hình 1.4. Phép quay Roll – Pitch – Yaw (Trang 11)
Hình 1.6. Vận tốc điểm tác động cuối so với hệ cố định - Tính toán điều khiển Robot công nghiệp
Hình 1.6. Vận tốc điểm tác động cuối so với hệ cố định (Trang 12)
Hình 1.5. Vị trí điểm tác động cuối - Tính toán điều khiển Robot công nghiệp
Hình 1.5. Vị trí điểm tác động cuối (Trang 12)
Hình 1.5. Vị trí điểm tác động cuối - Tính toán điều khiển Robot công nghiệp
Hình 1.5. Vị trí điểm tác động cuối (Trang 12)
Hình 1.7. Chuyển động khâu thác cuối trong khơng gian (hình hoa ba cánh) - Tính toán điều khiển Robot công nghiệp
Hình 1.7. Chuyển động khâu thác cuối trong khơng gian (hình hoa ba cánh) (Trang 16)
Hình 1.8. Đồ thị góc quay các biến khớp - Tính toán điều khiển Robot công nghiệp
Hình 1.8. Đồ thị góc quay các biến khớp (Trang 16)
Hình 1.7. Chuyển động khâu thác cuối trong không gian (hình hoa ba cánh) - Tính toán điều khiển Robot công nghiệp
Hình 1.7. Chuyển động khâu thác cuối trong không gian (hình hoa ba cánh) (Trang 16)
Hình 1.8. Đồ thị góc quay các biến khớp - Tính toán điều khiển Robot công nghiệp
Hình 1.8. Đồ thị góc quay các biến khớp (Trang 16)
Hình 1.9. Đồ thị vận tốc góc quay các biến khớp - Tính toán điều khiển Robot công nghiệp
Hình 1.9. Đồ thị vận tốc góc quay các biến khớp (Trang 16)
Hình 1.10. Đồ thị gia tốc góc của biến khớp - Tính toán điều khiển Robot công nghiệp
Hình 1.10. Đồ thị gia tốc góc của biến khớp (Trang 17)
Hình 1.10. Đồ thị gia tốc góc của biến khớp - Tính toán điều khiển Robot công nghiệp
Hình 1.10. Đồ thị gia tốc góc của biến khớp (Trang 17)
Hình 1.11. Đồ thị mối quan hệ giữa các tọa độ suy rộng với thời gian - Tính toán điều khiển Robot công nghiệp
Hình 1.11. Đồ thị mối quan hệ giữa các tọa độ suy rộng với thời gian (Trang 20)
Hình 1.11. Đồ thị mối quan hệ giữa các tọa độ suy rộng với thời gian - Tính toán điều khiển Robot công nghiệp
Hình 1.11. Đồ thị mối quan hệ giữa các tọa độ suy rộng với thời gian (Trang 20)
Hình 2.1. Moment tác động lên khớp động thứ nhất - Tính toán điều khiển Robot công nghiệp
Hình 2.1. Moment tác động lên khớp động thứ nhất (Trang 26)
Hình 2.2. Moment tác động lên khớp động thứ 2 - Tính toán điều khiển Robot công nghiệp
Hình 2.2. Moment tác động lên khớp động thứ 2 (Trang 26)
Hình 2.1. Moment tác động lên khớp động thứ nhất - Tính toán điều khiển Robot công nghiệp
Hình 2.1. Moment tác động lên khớp động thứ nhất (Trang 26)
Hình 2.3. Moment tác động lên khớp động thứ 3 - Tính toán điều khiển Robot công nghiệp
Hình 2.3. Moment tác động lên khớp động thứ 3 (Trang 26)
Hình 2.2. Moment tác động lên khớp động thứ 2 - Tính toán điều khiển Robot công nghiệp
Hình 2.2. Moment tác động lên khớp động thứ 2 (Trang 26)
Hình 3.2. Đồ thị góc khớp thứ 2 - Tính toán điều khiển Robot công nghiệp
Hình 3.2. Đồ thị góc khớp thứ 2 (Trang 29)
3.2.2. Thiết kế quỹ đạo trong không gian làm việc - Tính toán điều khiển Robot công nghiệp
3.2.2. Thiết kế quỹ đạo trong không gian làm việc (Trang 29)
Hình 3.1. Đồ thị góc khớp thứ 1 Hình 3.2. Đồ thị góc khớp thứ 2 - Tính toán điều khiển Robot công nghiệp
Hình 3.1. Đồ thị góc khớp thứ 1 Hình 3.2. Đồ thị góc khớp thứ 2 (Trang 29)
Hình 3.1. Đồ thị góc khớp thứ 1   Hình 3.2. Đồ thị góc khớp thứ 2 - Tính toán điều khiển Robot công nghiệp
Hình 3.1. Đồ thị góc khớp thứ 1 Hình 3.2. Đồ thị góc khớp thứ 2 (Trang 29)
Hình 3.2. Đồ thị góc khớp thứ 2 - Tính toán điều khiển Robot công nghiệp
Hình 3.2. Đồ thị góc khớp thứ 2 (Trang 29)
Hình 3.5. Phương trình x, y,z Hình 3.6. Quỹ đạo chuyển động - Tính toán điều khiển Robot công nghiệp
Hình 3.5. Phương trình x, y,z Hình 3.6. Quỹ đạo chuyển động (Trang 31)
Hình 3.3. Phương trình x, y,z Hình 3.4. Vận tốc của điểm tác động cuối - Tính toán điều khiển Robot công nghiệp
Hình 3.3. Phương trình x, y,z Hình 3.4. Vận tốc của điểm tác động cuối (Trang 31)
Hình 3.3. Phương trình x, y,z                 Hình 3.4. Vận tốc của điểm tác động cuối - Tính toán điều khiển Robot công nghiệp
Hình 3.3. Phương trình x, y,z Hình 3.4. Vận tốc của điểm tác động cuối (Trang 31)
Hình 3.7. Quỹ đạo chuyển động của điểm cuối - Tính toán điều khiển Robot công nghiệp
Hình 3.7. Quỹ đạo chuyển động của điểm cuối (Trang 33)
Hình 3.8. Vận tốc điểm tác động cuối Hình 3.9. Gia tốc điểm tác động cuối - Tính toán điều khiển Robot công nghiệp
Hình 3.8. Vận tốc điểm tác động cuối Hình 3.9. Gia tốc điểm tác động cuối (Trang 33)
Hình 3.7. Quỹ đạo chuyển động của điểm cuối - Tính toán điều khiển Robot công nghiệp
Hình 3.7. Quỹ đạo chuyển động của điểm cuối (Trang 33)
Trong hình (4.1) hệ Oxyz ii là hệ tọa độ khớp, Ci  i ii là hệ tọa độ khâu. - Tính toán điều khiển Robot công nghiệp
rong hình (4.1) hệ Oxyz ii là hệ tọa độ khớp, Ci  i ii là hệ tọa độ khâu (Trang 34)
Hình 4.1.  Hệ tọa độ khâu - Tính toán điều khiển Robot công nghiệp
Hình 4.1. Hệ tọa độ khâu (Trang 34)
Hình 5.1: Sơ đồ cấu trúc hệ thông điều khiển robot với bộ điều khiển PID - Tính toán điều khiển Robot công nghiệp
Hình 5.1 Sơ đồ cấu trúc hệ thông điều khiển robot với bộ điều khiển PID (Trang 39)
Hình 5.1: Sơ đồ cấu trúc hệ thông điều khiển robot với bộ điều khiển PID - Tính toán điều khiển Robot công nghiệp
Hình 5.1 Sơ đồ cấu trúc hệ thông điều khiển robot với bộ điều khiển PID (Trang 39)
Hình 5.2. Thiết kế sơ đồ khối trên Simulink - Tính toán điều khiển Robot công nghiệp
Hình 5.2. Thiết kế sơ đồ khối trên Simulink (Trang 41)
Hình 5.3. Thiết kế bộ điều khiển PID - Tính toán điều khiển Robot công nghiệp
Hình 5.3. Thiết kế bộ điều khiển PID (Trang 41)
Hình 5.2. Thiết kế sơ đồ khối trên Simulink - Tính toán điều khiển Robot công nghiệp
Hình 5.2. Thiết kế sơ đồ khối trên Simulink (Trang 41)
Hình 5.3. Thiết kế bộ điều khiển PID - Tính toán điều khiển Robot công nghiệp
Hình 5.3. Thiết kế bộ điều khiển PID (Trang 41)
Hình 5.4. Đồ thị biến khớp đặt và thực sau khi điều khiển - Tính toán điều khiển Robot công nghiệp
Hình 5.4. Đồ thị biến khớp đặt và thực sau khi điều khiển (Trang 42)
Hình 5.5. Đồ thị vận tốc biến khớp đặt và thực sau khi điều khiển - Tính toán điều khiển Robot công nghiệp
Hình 5.5. Đồ thị vận tốc biến khớp đặt và thực sau khi điều khiển (Trang 42)
Hình 5.4. Đồ thị biến khớp đặt và thực sau khi điều khiển - Tính toán điều khiển Robot công nghiệp
Hình 5.4. Đồ thị biến khớp đặt và thực sau khi điều khiển (Trang 42)
Hình 5.6. Đồ thị sai số của vận tốc góc khớp - Tính toán điều khiển Robot công nghiệp
Hình 5.6. Đồ thị sai số của vận tốc góc khớp (Trang 43)
Hình 5.6. Đồ thị sai số của góc khớp - Tính toán điều khiển Robot công nghiệp
Hình 5.6. Đồ thị sai số của góc khớp (Trang 43)
Hình 5.6. Đồ thị sai số của góc khớp - Tính toán điều khiển Robot công nghiệp
Hình 5.6. Đồ thị sai số của góc khớp (Trang 43)
Hình 5.6. Đồ thị sai số của vận tốc góc khớp - Tính toán điều khiển Robot công nghiệp
Hình 5.6. Đồ thị sai số của vận tốc góc khớp (Trang 43)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w