Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 29 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
29
Dung lượng
670 KB
Nội dung
CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn
: 6.280.688
A.ĐẶT VẤN ĐỀ.
Trong những năm gần đây, cùng với sự sôi động của thị trường chứng
khoán, thì vàngvà dầu mỏ là hai mặt hàng rất được giới đầu tư quan tâm. Do
đặc tính vốn có của mình, vàng trở thành công cụ cất trữ an toàn trong
những trường hợp thị trường biến động. Mặt khác, giávàng liên tục biến đổi,
nhiều nhà đầu tư đã đưa vàng vào danh mục đầu tư của mình để đa dạng hóa
danh mục và phòng hộ rủi ro. Tuy nhiên giávàng vẫn hàng ngày biến động
và biến động hết sức phức tạp không thể dự đoán trước được, do đó rất khó
khăn cho các nhà đầu tư trong việc định giá độ rủi ro của giá vàng. Chính vì
vậy, qua quá trình nghiên cứu và được sự hướng dẫn của PGS.TS Nguyễn
Quang Dong em đã lựa chọn đề tài “Sử dụngmôhìnhARIMAvàmô hình
GARCH trongphântíchgiá vàng” nhằm ước lượng về độ rủi ro của giá
vàng.
Do hạn chế về nhận thức và thời gian nghiên cứu nên bài viết của em
còn rất nhiều thiếu sót. Em rất mong nhận được sự hướng dẫn của thầy giáo
để bài viết của em hoàn thành hơn.
Em xin chân thành cảm ơn PGS.TS. Nguyễn Quang Dong đã giúp đỡ
em hoàn thành đề tài này.
1
CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn
: 6.280.688
B. NỘI DUNG.
I. Lý thuyết về môhìnhARIMAvàmôhình GARCH.
Trong thị trường tài chính đặc biệt là trong thị trường chứng khoán,
vấn đề rủi ro và quản lý rủi ro là một vấn đề hết sức thiết yếu. Khi xét
phương sai của một tài sản tài chính thì phương sai này đặc trưng cho độ rủi
ro của tài sản.
Việc áp dụng các môhình kinh tế lượng vào phântích phương sai của
các tài sản tài chính giúp ta trả lời cho câu hỏi mức dao động trong lợi suất
khác nhau liệu có phụ thuộc vào sự thay đổi lợi suất trong quá khứ và mức
độ dao động của sự thay đổi này hay không?
Với các môhìnhmô tả phương sai có điều kiện của sai số thay đổi
bao giờ cũng gồm hai phần.
Phần 1: Mô tả lợi suất trung bình.
Phần 2: Mô tả cơ chế thay đổi của phương sai.
µ
t
= E(R
t
/ F
t-1
).
σ
2
t
=Var(R
t
/ F
t-1
).
F
t-1
là tất cả các thông tin có tại thời kì (t-1).
R
t
=
µ
t
+ u
t.
R
t
được mô tả bằng quá trình ARMA(p,q).
R
t
=
φ
o
+
∑
=
p
i 1
φ
i
R
t-i
+ u
t
+
∑
=
q
j 1
θ
o
u
t-j
µ
t
=
φ
o
+
∑
=
p
i 1
φ
i
R
t-i
-
∑
=
q
j 1
θ
o
u
t-j
.
1. Môhình ARIMA.
Mô hình ARIMA(p,d,q) trong đó: p là bậc tự hồi quy, d là số lần lấy
sai phân chuỗi Y
t
để được một chuỗi dừng, q là bậc trung bình trượt. p và q
là bậc tương ứng của chuỗi dừng.
2
CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn
: 6.280.688
Giả sử chuỗi quan sát là chuỗi liên kết bậc 1 (I(1)) thì ta có mô hình
ARIMA(p,1,q) được biểu diễn như sau:
Δ Y
t
= φ
0
+
∑
=
p
i 1
φ
i
х Δ Y
t-i
+
∑
=
q
j 0
θ
q
х u
t-q
.
2. Môhình ARCH.
Mô hình ARCH có dạng:
22
110
2
mtmtt
ttt
ttt
uu
u
uR
−−
+++=
=
+=
ααασ
εσ
µ
Trong đó: R
t
là lợi suất của tài sản tại thời điểm t.
i
i
∀≥> 0,0
0
αα
.
t
ε
là
biến ngẫu nhiên độc lập có cùng phân bố và có E(
t
ε
) = 0, Var(
t
ε
) =1.
Phương sai dài hạn
∑
=
−
=
m
i
i
1
0
2
1
α
α
σ
10
1
<≤
∑
=
m
i
i
α
3. Môhình GARCH.
Mô hình GARCH(m,s) có dạng:
∑∑
=
−
=
−
++=
=
+=
s
j
jtj
m
i
itit
ttt
ttt
u
u
uR
1
2
1
2
0
2
σβαασ
εσ
µ
Trong đó:
i
i
∀≥> 0,0
0
αα
,
1)(,0
),max(
1
<+∀≥
∑
=
sm
i
jij
j
βαβ
Phương sai dài hạn
∑
=
+−
=
).max(
1
0
2
)(1
sm
i
ji
βα
α
σ
3
CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn
: 6.280.688
II.Sử dụngmôhìnhARIMAvàmôhìnhGARCHtrongphântíchgiá
vàng.
1.Số liệu và nguồn gốc số liệu.
Số liệu sửdụngtrong bài là giávàng của thị trường London được
quan sát theo tháng, từ tháng 1 năm 1968 đến tháng 8 năm 2007.
Bản chất số liệu là số liệu chuỗi thời gian.
Sử dụngphần mềm Eviews 4.0 vẽ đồ thị giávàng từ tháng 1 năm
1968 đến tháng 8 năm 2007 ta có kết quả sau:
Từ hình vẽ, ta thấy tốc độ tăng trưởng của giávàng trước năm 1980
nhanh và có phần tăng vọt không ổn định. Từ sau năm 1980 giávàng lúc
tăng lúc giảm nhưng theo xu hướng đi lên và với biên độ nhỏ hơn trước đó.
Từ năm 2006, giávàng đang có xu hướng tăng lên. Có rất nhiều nguyên
nhân làm cho giávàng tăng nhanh. Thứ nhất là do nhu cầu về vàng ngày
càng tăng, trong khi lượng cung cấp lại hạn hẹp. Thứ hai là sự leo thang của
4
CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn
: 6.280.688
giá dầu trong những năm gần đây. Ngoài ra còn có các nguyên nhân khách
quan như tình hình chính trị bất ổn, sự lên giá của đồng Đô la hay những
nguy cơ về lạm phát, và biến động trong lãi suất
Cũng từ hình vẽ ta thấy chuỗi giávàng là chuỗi không dừng.
2. Kiểm định tính dừng của chuỗi lợi suất của vàng.
{S
t
} là chuỗi giá vàng. Lợi suất của vàng được tính theo công thức
ghép lãi liên tục:
R
t
= ln
−1t
t
S
S
a. Vẽ đồ thị.
Sử dụngphần mềm Eviews 4.0 vẽ đồ thị chuỗi lợi suất giávàng từ
tháng 1 năm 1968 đến tháng 8 năm 2007 ta có kết quả sau:
5
CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn
: 6.280.688
Hình vẽ cho thấy lợi suất R
t
dao động trong khoảng
5.0±
. Ở thời gian
đầu lợi suất biến động rất mạnh, nhất là trong giai đoạn thập niên 70,
80. Nguyên nhân có lẽ là do cuộc suy thoái kinh tế trong giai đoạn này
tác động làm cho giávàng thay đổi thất thường. Đến những giai đoạn
sau thì lợi suất đã biến động đều đặn hơn.
Từ hình vẽ, ta thấy R
t
là chuỗi dừngvà không có hệ số chặn.
Thống kê mô tả đối với chuỗi lợi suất vàng.
6
CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn
: 6.280.688
b.Kiểm định tính dừng của chuỗi lợi suất vàng
Giả thiết: H
o
: Chuỗi không dừng.
H
1
: Chuỗi dừng.
Sử dụng Eviews 4.0 với kiểm định Dickey _ Fuller cho chuỗi lợi suất
vàng ta có kết quả sau:
Từ bảng trên ta có |
τ
qs
| = 9.163057 >
τ
α
, với mọi mức ý nghĩa α
=1%, α = 5%, α = 10% ta kết luận chuỗi lợi suất của vàng là chuỗi dừng.
Kết quả ước lượng: DW = 1.999820 cho biết u
t
không tự tương quan.
7
CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn
: 6.280.688
3. Ước lượng các tham số của môhình ARIMA.
Định dạng môhìnhARIMA đối với lợi suất vàng
bằng lược đồ tương
quan.
Từ lược đồ tương quan ta thấy p=1, p=2 và q=1 do đó ta ước lượng
mô hình ARIMA(2,0,1) như sau:
8
CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn
: 6.280.688
Từ kết quả ước lượng ta thấy hệ số của AR(1) và AR(2) bằng 0. Ta có các
kiểm định sau:
H
o
: c(2) =0.
H
1
: c(2)≠ 0.
Từ kết quả kiểm định ta thấy kiểm định F có P
value
> 0.05 và kiểm định
χ
2
có P
value
> 0.05 nên chấp nhận giả thiết H
0
hay hệ số của AR(1) bằng 0 có
ý nghĩa thống kê.
H
o
: c(3) =0.
H
1
: c(3)≠ 0.
Từ kết quả kiểm định ta thấy kiểm định F có P
value
> 0.05 và kiểm định
χ
2
có P
value
> 0.05 nên chấp nhận giả thiết H
0
hay hệ số của AR(2) bằng 0 có
ý nghĩa thống kê.
Trước hết ta bỏ biến AR(2) và ước lượng môhình ARIMA(1,0,1) ta
có kết quả ước lượng như sau:
9
CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn
: 6.280.688
Kết quả ước lượng cho thấy hệ số của AR(1) bằng 0. Ta có kiểm định
sau:
H
o
: c(2) =0.
H
1
: c(2)≠ 0.
Từ kết quả kiểm định ta thấy kiểm định F có P
value
> 0.05 và kiểm định
χ
2
có P
value
> 0.05 nên chấp nhận giả thiết H
0
hay hệ số của AR(1) bằng 0 có
ý nghĩa thống kê.
Ta bỏ biến AR(1) trongmôhìnhvà ước lượng môhình
ARIMA(0,0,1) như sau:
10
[...]... âm hay cú sốc dương lên lợi suất vàng là khác nhau hay tồn tại hiệu ứng đòn bẩy đối với lợi suất vàngSự biến động của rủi ro lợi suất vàng là hết sức thất thường 26 CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn : 6.280.688 C KẾT LUẬN Những năm gần đây giávàng bắt đầu leo thang, và giới phântích cho rằng giávàng sẽ vẫn tiếp tục tăng trong những năm tới Nguyên nhân... đang dần đưa vàng vào danh mục đầu tư thay cho đầu tư vào các chứng khoán khác, do sự lên giá của dầu hay các ngoại tệ khác( USD, EURO) Mặc dù dự đoán như vậy nhưng qua những phântích ở trên ta thấy rằng giávàng vẫn biến động hết sức phức tạp, không theo một xu hướng nhất định Đầu tư vào vàng là một vấn đề được rất nhiều người quan tâm, hứa hẹn mang lại lợi nhuận lớn Tuy nhiên trong tình hình hiện nay... quá trình ước lượng ta thấy lợi suất vàng của mỗi tháng không chịu ảnh hưởng của lợi suất các tháng trước đó( do hệ số của AR trongmôhình ARMA bằng 0) Tuy nhiên hệ số MA(1) dương cho thấy rằng lợi suất vàng có xu hướng tăng theo thời gian Mức dao động trong lợi suất vàng có khác nhau trong các tháng, nó vừa phụ thuộc vào sự thay đổi của lợi suất, vừa phụ thuộc vào mức độ dao động của sự thay đổi này... ước lượng môhình ARCH như sau: 14 CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn : 6.280.688 Nhìn vào kết quả ước lượng ta thấy hệ số chặn, hệ số của AR(1), MA(1), MA(2) bằng 0 (do xác suất P value > 0.05) và thống kê DW =1.885166 do đó ut tự tương quan Ta tiến hành hiệu chỉnh môhình bằng cách lần lượt bỏ đi từng biến mà hệ số của chúng trongmôhình bằng 0 và hiệu chỉnh... 1.997882 cho biết ut không tự tương quan Vậy môhình ARIMA( 0,0,1) đã ước lượng ở trên tồn tại 13 CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn : 6.280.688 Xác định p Tạo biến e2 là bình phương của phần dư thu được ở môhình ARIMA( 0,0,1) đã ước lượng ở trên, sửdụng lược đồ tương quan với chuỗi này để xác định hệ số p của môhình ARCH Từ lược đồ tương quan ta thấy p=1,... đoán giá vàng, cũng như mức lợi suất là hết sức khó khăn Vì vậy dưới sự hướng dẫn của PGS.TS Nguyễn Quang Dong em đã hoàn thành bài viết này mong muốn cung cấp một trong những đánh giá về giávàng hiện nay 27 CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn : 6.280.688 D DANH MỤC TÀI LIỆU THAM KHẢO 1 PGS.TS Nguyễn Quang Dong Khoa Toán Kinh Tế Giáo trình Kinh tế lượng và bài... 1.997923 cho biết ut không tự tương quan Vậy mô hình thỏa mãn mọi giả thiết của mô hình lý thuyết 18 CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn : 6.280.688 4.2 Mô hình GARCH Kết quả ước lượng cho thấy các hệ số đều khác không có ý nghĩa thống kê Thống kê DW=1.931554 nên ut tự tương quan Các kiểm định: Ghi lại phần dư của mô hình đặt tên là e4 rồi kiểm định tính dừng... một tài sản phụ thuộc vào bản thân độ rủi ro của tài sản đó Có một nguyên tắc là rủi ro càng lớn thì lợi suất yêu cầu đối với tài sản đó càng cao Bởi vậy người ta tìm cách đưa độ rủi ro vào ước lượng lợi suất Để làm điều này ta sử dụngmôhình GARCH_ M Ta có kết quả ước lượng sau đây: 24 CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn : 6.280.688 Môhình có phương sai:... tương quan Môhình có dạng: rt = 0.006181 + 0.378496*ut-1 4.Ước lượng môhình ARCH, GARCH 4.1 .Mô hình ARCH(p) a.Ước lượng tham số p Từ phương trình ARIMA( 0,0,1) ước lượng ở trên ta ghi lại phần dư, kí hiệu là e Kiểm định tính dừng của chuỗi phần dư này 11 CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn : 6.280.688 Vẽ đồ thị: Từ đồ thị ta thấy chuỗi phần dư dừngvà có hệ... sẽ xem xét sự ảnh hưởng của các cú sốc đối với lợi suất của giávàng Các môhình đã ước lượng ở trên có nhược điểm là không xem xét được sự ảnh hưởng của cú sốc âm, cú sốc dương đối với lợi suất Để xem xét sự ảnh hưởng này bằng môhình TARCH 22 CH sè 11 - B1 - §H KTQD Chuyªn Photocopy - §¸nh m¸y - In LuËn v¨n, TiÓu luËn : 6.280.688 Ta thêm vào biến giả: Dt −1 = 1 khi ut-1 < 0 Dt −1 = 0 khi ut-1 ≥ 0 . 6.280.688
II .Sử dụng mô hình ARIMA và mô hình GARCH trong phân tích giá
vàng.
1.Số liệu và nguồn gốc số liệu.
Số liệu sử dụng trong bài là giá vàng của thị. chọn đề tài Sử dụng mô hình ARIMA và mô hình
GARCH trong phân tích giá vàng nhằm ước lượng về độ rủi ro của giá
vàng.
Do hạn chế về nhận thức và thời gian