TRƯỜNG THCS LÊ THÁNH TÔNG ĐỀ B ĐỀ THI THỬ VÀO LỚP 10 THPT LẦN 1 NĂM HỌC 2018 – 2019 MÔN THI TOÁN Thời gian làm bài 120 phút (Không kể thời gian giao đề) Ngày thi 13 tháng 6 năm 2018 (Đề thi gồm 01 trang) Bài 1 (2,0 điểm) Giải các phương trình và hệ phương trình 1) x2 + 3x + 2 = 0 2) 3 5 3 2 4 x y x y Bài 2 (2,0 điểm) Cho biểu thức A = 1 1 2 11 1 x xx x x x (với x > 0; x ≠ 1) 1) Rút gọn biểu thức A 2) Tính giá trị của biểu thức A khi x = 3 2 2 B.
TRƯỜNG THCS LÊ THÁNH TÔNG -ĐỀ B ĐỀ THI THỬ VÀO LỚP 10 THPT LẦN NĂM HỌC 2018 – 2019 MÔN THI: TỐN Thời gian làm bài: 120 phút (Khơng kể thời gian giao đề) Ngày thi: 13 tháng năm 2018 (Đề thi gồm: 01 trang) Bài (2,0 điểm): Giải phương trình hệ phương trình: x 3y 2) 3x y 1) x2 + 3x + = Bài (2,0 điểm): x : x x x x x 1 Cho biểu thức: A = (với x > 0; x ≠ 1) 1) Rút gọn biểu thức A 2) Tính giá trị biểu thức A x = 2 Bài (2,0 điểm): Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = mx + m + (với m tham số) parabol (P): y = x2 1) Tìm m để đường thẳng (d) cắt đường thẳng y = 2x – điểm A có hồnh độ 2) Tìm m để đường thẳng (d) cắt parabol (P) hai điểm phân biệt có hồnh độ x1; x2 cho x x x x x x 12 Bài (3,0 điểm): Cho đường tròn (O; R) dây Ab cố định (AB < 2R) Điểm C di động đường tròn (O; R) cho tam giác CAB nhọn Các đường cao AE, BF cắt H 1) Chứng minh tứ giác ABEF tứ giác nội tiếp 2) Tia phân giác góc AHF cắt CA M, tia phân giác góc BHE cắt CB N Chứng minh tam giác CMN cân 3) Đường tròn ngoại tiếp tam giác CMN cắt tia phân giác góc ACB K Gọi P giao điểm MK AH, Q giao điểm NK BH Chứng minh tứ giác PHQK hình bình hành đường thẳng HK ln qua điểm cố định Bài (1,0 điểm): Cho hai số dương x, y thỏa mãn điều kiện x + y ≤ Tìm giá trị lớn biểu thức: x2 y P = x2 4xy HẾT (Cán coi thi khơng giải thích thêm)