1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề học sinh giỏi khối 11 2020 2021 Nghệ An

5 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 310 KB

Nội dung

SỞ GD ĐT NGHỆ AN THPT KIM LIÊN ĐỀ THI HỌC SINH GIỎI LỚP 11 NĂM HỌC 2020 2021 Môn Toán Thời gian 150 phút (không kể thời gian giao đề) Bài 1 (4,0 điểm) a Tìm tất cả các nghiệm thuộc khoảng của phương trình b Từ một hộp chứa 12 quả cầu, trong đó có 8 quả màu đỏ, 3 quả màu xanh và 1 quả màu vàng, lấy ngẫu nhiên 3 quả Tính xác suất để lấy được 3 quả cầu có đúng hai màu Bài 2 (6,0 điểm) a Cho hình chóp có đáy là hình chữ nhật Chứng minh rằng b Cho hình lăng trụ tam giác đều có cạnh đáy bằng , độ dà.

SỞ GD & ĐT NGHỆ AN THPT KIM LIÊN ĐỀ THI HỌC SINH GIỎI LỚP 11 NĂM HỌC 2020-2021 Môn: Tốn Thời gian: 150 phút (khơng kể thời gian giao đề) Bài (4,0 điểm) a Tìm tất nghiệm thuộc khoảng  0;   phương trình: cos x  sin x  cos x b Từ hộp chứa 12 cầu, có màu đỏ, màu xanh màu vàng, lấy ngẫu nhiên Tính xác suất để lấy cầu có hai màu Bài (6,0 điểm) uuu r uuu r uur uuu r2 a.Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật Chứng minh SA  SC  SB  SD b Cho hình lăng trụ tam giác ABC A1 B1C1 có cạnh đáy , độ dài đường chéo mặt bên Tính góc hai mặt phẳng  A1 BC   ABC  Bài (2,0 điểm) Cho hình chóp tứ giác S.ABCD có đáy hình vng cạnh a Mặt bên SAD tam giác mặt phẳng vng góc với đáy Gọi M, P trung điểm SB, CD Chứng minh AM  BP Bài (4,0 điểm) 3n 1  10 a Tìm hệ số chứa x khai triển  x  x  1  x   với n số tự nhiên thỏa mãn hệ thức 4  n2 An  Cn  14n ( x  2021)  x  2021 x  x 0 x b Tìm giới hạn: lim Bài (4,0 điểm) u1  2021 a Cho dãy số (un) xác định   3n  9n  un 1   n  5n   un , n   3n  lim Tính giới hạn  un  n  sin x sin y    b Cho x, y   0;  thỏa cos x  cos y  2sin  x  y   Tìm giá trị nhỏ P  y x  2 …………… Hết …………… Họ tên thí sinh…………………………………………… Số báo danh…………………… Đáp án: Bài a Tìm tất nghiệm thuộc khoảng  0;   phương trình: cos x  sin x  cos x Hướng dẫn giải   x    k    cos 3x  sin x  cos x  cos 3x  cos  x     4  x    k   16 Ta có: Vì x   0;   nên nhận x   k ¢ 7  9 , x , x 16 16 b.Từ hộp chứa 12 cầu, có màu đỏ, màu xanh màu vàng, lấy ngẫu nhiên Tính xác suất để lấy cầu có hai màu Lời giải Số phần tử không gian mẫu là: n     C12  220 Gọi A biến cố: “Lấy cầu có hai màu” - Trường hợp 1: Lấy màu vàng màu đỏ có: C8  28 cách - Trường hợp 2: Lấy màu vàng màu xanh có: C3  cách - Trường hợp 3: Lấy màu đỏ màu xanh có: C8 C3  24 cách - Trường hợp 4: Lấy màu xanh màu đỏ có: C3 C8  84 cách Số kết thuận lợi biến cố A là: n  A  28   24  84  139 cách Xác suất cần tìm là: P  A   n  A  139  n    220 Bài a.Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật Chứng minh uuu r uuu r uur uuu r2 SA  SC  SB  SD Lời giải: Gọi O tâm hình chữ nhật ABCD uuur uuur uuur uuur Ta có OA  OB  OC  OD uuu r uuu r uuur SA  SO  OA  uuu r uuu r uuur SC  SO  OC    uuu r uuur uuu r uuur  SO  OA  2SO.OA (1) uuu r uuur uuu r uuur  SO  OC  2SO.OC (2) Từ  1  2 suy uuu r uuu r2 uuu r uuur uuur uuu r uuur uuur SA  SC  2SO  OA  OC  2SO OA  OC  uuur uuur r uuu r uuur uuur ( OA  OC  0)  2SO  OA  OC uur uuu r2 uuu r uuur2 uuur Tương tự SB  SD  2SO  OB  OD uuu r uuu r uur uuu r2 Từ suy SA  SC  SB  SD  b Cho hình lăng trụ tam giác ABC A1 B1C1 có cạnh đáy , độ dài đường chéo mặt bên Tính góc hai mặt phẳng  A1BC   ABC  Hướng dẫn giải Chọn A Gọi H trung điểm BC , tam giác ABC nên AH  BC ta có BC   AHA   ·A BC  ,  ABC   ·AH , A H  ·AHA     1 2 Xét tam giác vuông A1 AB có AA1  A1B  AB    Mặt khác AH đường cao tam giác ABC cạnh AB  nên AH  AA1  Xét tam giác vuông AA1 H có tan ·AHA1   ·AHA1  30 AH Bài Cho hình chóp tứ giác S.ABCD có đáy hình vng cạnh a Mặt bên SAD tam giác mặt phẳng vng góc với đáy Gọi M, P trung điểm SB, CD Chứng minh AM  BP LỜI GIẢI: Gọi N trung điểm BC a Hạ SH  AD H Vì SAD tam giác nên SH  Vì mặt phẳng (SAD) vng góc mặt phẳng (ABCD) có AD giao tuyến Suy SH  mp  ABCD  Ta có  AN PHC, MN PSC   AM ,MN  (AMN)  (AMN) P(SHC) HC,SC  (SHC) ả P 900 C ả P µ  900  CH  PB µ C ¶ mà B Trong hình vng ABCD có BCP  CDH  c.g.c nên B 1 1 1  BP  CH Ta có   BP  SH  BP   SHC   BP   AMN   BP  AM ỉ1 3n n số tự nhiên thỏa mãn ÷ Bài a Tìm hệ số chứa x10 khai trin f ( x) = ỗỗỗ x2 + x +1÷ ÷( x + 2) với è4 n n- n hệ thức A +C = 14n ø ® n = Lời giải Từ phương trình An3 +Cnn- = 14n ¾¾ ỉ1 1 3n 15 19 ÷( x + 2) = ( x + 2) ( x + 2) = ( x + 2) Với ta có f ( x) = ỗỗỗ x2 + x +1ữ ữ ố4 ứ 16 16 1 19 k k 19- k 19 Theo khai triển nhị thức Niu-tơn, ta có f ( x) = ( x + 2) = å C19.2 x 16 16 k=0 Số hạng chứa x10 khai triển tương ứng với 19- k = 10 Û k = Vậy hệ số số hạng chứa x10 khai triển C1910 29 = 25C1910 16 n= 5, b.Tìm giới hạn: lim (x  2021)3  2x  2021 4x  x 0 x  2x   4x     2021 Ta có L  Lim  x  2x  2021   x0 x x   Lim x  2x  x 0 Lim x 0 Lim x 0  2x  2x 2 2`  Lim  Lim  x 0 x x( (1  2x)   2x  1) x 0 ( (1  2x)   2x  1) 4x   4x  Lim  Lim 2 x 0 x( 4x   1) x 0 x 4x   16168  2  Vậy L   2021  2021.2    u1  2021 Bài a Cho dãy số (un) xác định   3n  9n  un 1   n  5n   un , n   3n  lim Tính giới hạn  un  n  un 1 ( n  1)  3(n  1) un un   Ta có un 1  2 n  3n (n  1)  3( n  1) n  3n u u 2021 1 Đặt  n  1   (vn) cấp số nhân có cơng bội q  số hạng đầu v1   n  3n 3 4 n 1 n 1 2021   2021        un     n  3n  3 3 n   2021    3n  3n     n  3n   Khi lim  un   lim  n  n   3   6063 n  3n  6063   6063  lim  lim 1     n 4  n   sin x sin y    b Cho x, y   0;  thỏa cos x  cos y  2sin  x  y   Tìm giá trị nhỏ P  y x  2 Lờigiải cos x  cos y  2sin x  y   sin x  sin y  sin  x  y    Tacó: Suyra: x  y   2 a  b Ápdụngbđt: a  b   m n mn  sin Suyra: P  Dođó: P  x  sin y  x y  2  Đẳngthứcxảyra  x  y    ... triển C1910 29 = 25C1910 16 n= 5, b.Tìm giới hạn: lim (x  2021) 3  2x  2021 4x  x 0 x  2x   4x     2021 Ta có L  Lim  x  2x  2021   x0 x x   Lim x  2x  x 0 Lim x 0 Lim x...  1) n  3n u u 2021 1 Đặt  n  1   (vn) cấp số nhân có cơng bội q  số hạng đầu v1   n  3n 3 4 n 1 n 1 2021   2021        un     n  3n  3 3 n   2021    3n ... 4x   4x  Lim  Lim 2 x 0 x( 4x   1) x 0 x 4x   16168  2  Vậy L   2021? ??  2021. 2    u1  2021 Bài a Cho dãy số (un) xác định   3n  9n  un 1   n  5n   un , n

Ngày đăng: 20/06/2022, 22:01

TỪ KHÓA LIÊN QUAN

w