1. Trang chủ
  2. » Giáo Dục - Đào Tạo

750 câu trắc nghiệm toán phát triển từ đề minh họa 2020 lần 2 có đáp án

100 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề 750 Câu Trắc Nghiệm Phát Triển Từ Đề Minh Họa Toán 2020 Lần 2 Có Đáp Án
Trường học Thư Viện Học Liệu
Chuyên ngành Toán Học
Thể loại tài liệu
Năm xuất bản 2020
Thành phố Hà Nội
Định dạng
Số trang 100
Dung lượng 4,11 MB

Nội dung

www.thuvienhoclieu.com 750 CÂU TRẮC NGHIỆM PHÁT TRIỂN TỪ ĐỀ MINH HỌA TỐN 2020 LẦN CĨ ĐÁP ÁN Câu Có cách chọn hai học sinh từ nhóm gồm 10 học sinh? A C10 B A10 C 102 D 210 Câu 1.1 Tổ lớp 11A gồm bạn nam bạn nữ Để chọn đội lao động tổ, cần chọn bạn nữ ba bạn nam Số cách chọn A 21 B 60 C 40 D 120 Câu 1.2 Một chi đồn có 16 đồn viên Cần bầu chọn Ban Chấp hành ba người gồm Bí thư, Phó Bí thư Ủy viên Số cách chọn Ban Chấp hành nói A 560 B 4096 C 48 D 3360 Câu 1.3 Từ chữ số 1; 2; 3; lập số tự nhiên có chữ số đôi khác nhau? A 42 B 12 C 24 D 44 Câu 1.4 Có cách xếp nhóm học sinh gồm bạn nam bạn nữ thành hàng ngang? A 10! B 4! C 6!.4! D 6! Câu 1.5 Có cách xếp nhóm học sinh thành hàng ngang? A 49 B 720 C 5040 D 42 Câu 1.6 Lớp 11A có 25 học sinh nam 20 học sinh nữ Hỏi có cách chọn học sinh làm lớp trưởng? A 25!+ 20! cách B 45! cách C 45 cách D 500 cách Câu 1.7 Có cách chọn học sinh từ 20 học sinh lớp 11A ? A 1860480 cách B 120 cách C 15504 cách D 100 cách Câu 1.8 Cho tứ giác lồi ABCD điểm S không thuộc mặt phẳng (ABCD) Có mặt phẳng qua S hai số bốn điểm A, B, C , D ? A B C D Câu 1.9 Cho chữ số 1, 2, 3, 4, Từ chữ số ta lập số tự nhiên có chữ số khác nhau? A 120 B 60 C 30 D 40 Câu 1.10 Có cách xếp 10 bạn vào bàn ngang có 10 ghế? A 8! B 10! C 7! D 9! Câu 1.11 Từ chữ số 1, 2, 3, 4, lập số tự nhiên có chữ số đơi khác nhau? A 3125 B 125 C 120 D 625 Câu 1.12 A83 ký hiệu www.thuvienhoclieu.com Trang www.thuvienhoclieu.com A Số tổ hợp chập phần tử B Số chỉnh hợp chập phần tử C Số chỉnh hợp chập phần tử D Số hoán vị phần tử Câu 1.13 Rút ngẫu nhiên thẻ tập hợp gồm 10 thẻ Số cách rút A 5040 B 210 C 14 D 40 Câu 1.14 C72 ký hiệu A Số hoán vị phần tử.B Số tổ hợp chập phần tử C Số chỉnh hợp chập phần tử.D Số tổ hợp chập phần tử Câu 1.15 Số cách xếp chỗ ngồi cho học sinh vào dãy có ghế kê theo hàng ngang A 10 B 24 C 120 D 25 Câu 1.16 Ông T dẫn cháu nội ngoại xếp thành hàng dọc vào rạp xem phim Hỏi có cách xếp khác ông T đứng cuối hàng? A 720 B 5040 C 120 D 702 Câu 1.17 Số cách phân học sinh 12 học sinh lao động là: A P12 B 36 C A12 D C12 Câu 1.18 Có tất cách xếp sách khác vào hàng ngang giá sách? A 5! B 65 C 6! D 66 Câu 1.19 Một tổ có học sinh nam học sinh nữ Hỏi có cách chọn bạn trực nhật cho có nam nữ? A 35 B 49 C 12 D 25 Câu 1.20 Có cách lấy phần tư tùy ý từ tập hợp có 12 phần tử A 312 B 123 CÂU Cho cấp số cộng A ( un ) B Câu 2.1 Cho cấp số cộng C A12 với u1 = u2 = Công sai cấp số cộng cho C 12 ( un ) D C12 D ‐ u2 + u3 − u6 = thỏa mãn  u4 + u8 = −14 Công thức tổng quát cấp số cộng A un = − 2n B un = + n C un = 3n + D un = −3n + u2 − u4 + u5 Câu 2.2 Tìm số hạng đầu u1 cơng bội q cấp số nhân ( un ) thỏa mãn  u3 − u5 + u6 B u1 = 3, q = A u1 = 2, q = u1 = 1, q = Câu 2.3 Cho cấp số cộng tiên A d = 2; S10 = 100 ( un ) C u1 = 1, q = = 114 = 342 D biết u3 = 6, u8 = 16 Tính cơng sai d tổng 10 số hạng đầu B d = 1; S10 = 80 C d = 2; S10 = 120 www.thuvienhoclieu.com D d = 2; S10 = 110 Trang www.thuvienhoclieu.com Câu 2.4 Cho cấp số cộng có u1 = công sai d = Tổng 26 số hạng cấp số cộng bao nhiêu? A 975 Câu 2.5 Cho B 775 ( un ) C 875 cấp số cộng với công sai d Biết u5 = 16, u7 = 22 Tính u1 A u1 = −5 C u1 = 19 B u1 = −2 Câu 2.6 Cho dãy D 675 ( un ) D u1 = cấp số cộng có u1 = u9 = 26 Tìm u5 B 13 C 12 D 14 A 15 Câu 2.7 Bốn số lập thành cấp số cộng Tổng chúng 22, tổng bình phương chúng 166 Tính tổng lập phương bốn số A 1480 B 1408 C 1804 D 1840 ( un ) Câu 2.8 Cho cấp số nhân ( un ) có u4 = 40, u6 = 160 Tìm số hạng đầu cơng bội cấp số nhân A u1 = −5, q = −2 B u1 = −2, q = −5 Câu 2.9 Cho cấp số cộng ( un ) C u1 = −5, q = D u1 = −140, q = 60 với số hạng đầu u1 = 15 cơng sai d = −2 Tìm số hạng thứ cấp số cộng cho A −1 Câu 2.10 Cho A B ( un ) C 103 cấp số cộng với công sai d Biết u7 = 16, u9 = 22 Tính u1 B 19 D −2 C Câu 2.11 Cho cấp số nhân A u3 = D 64 ( un ) u1 + u3 = 10 u1 + u3 = 10  thỏa mãn   u + u = 80 u1 + u3 = 10  B u3 = Câu 2.12 Cho cấp số cộng ( un ) C u3 = D u3 = có u4 = −12; u14 = 18 Tổng 16 số hạng cấp số cộng A S = 24 B S = −25 Câu 2.13 Cho cấp số cộng d cấp số cộng A u1 = 2; d = Câu 2.14 Cho cấp số cộng ( un ) C S = −24 biết u5 = 18 4Sn = S2 n Tìm số hạng u1 công sai B u1 = 2; d = ( un ) D S = 26 C u1 = 2; d = D u1 = 3; d = u2 − u3 + u5 = 10 biết  u4 + u6 = 26 Tìm tổng 10 số hạng cấp số ( un ) www.thuvienhoclieu.com Trang www.thuvienhoclieu.com B S10 = 154 C S10 = 290 A S10 = 145 Câu 2.15 Cho cấp số cộng ( un ) u5 + 3u3 − u2 = −21 thỏa mãn  3u7 − 2u4 = −34 Tính tổng 15 số hạng cấp số A −285 D S10 = 45 ( un ) B −244 Câu Nghiệm phương trình A x = B x = x−1 C −253 D −274 C x = D x = = 27 Câu 3.1 Tìm nghiệm phương trình log ( 3x − ) = A x = B x = 10 C x = Câu 3.2 Tìm nghiệm phương trình A x = (7 + ) B x = − x+1 −3 x 11 = − B x1 + x2 = Câu 3.4 Tập nghiệm phương trình x A S =  D x = D x = − C x = −1 Câu 3.3 Gọi x1 , x2 nghiệm phương trình x A x1 + x2 = 16 −5 x + = 343 Tính x1 + x2 D x1 + x2 = C x1 + x2 = = B S = 1; 2 C S = 0 D S = 1 Câu 3.5 Phương trình 3x−4 = có nghiệm A x = −4 B x = C x = D x = Câu 3.6 Phương trình 3x−4 = có nghiệm A x = −4 B x = C x = D x = Câu 3.7 Tập nghiệm phương trình log 0,25 ( x − 3x ) = −1 là: A {4}  − 2 + 2  B  ;    C 1; − 4 D −1; 4 Câu 3.8 Tập nghiệm phương trình log ( x − x + ) = A 0; −2 B {2} C 0 D {0;2} Câu 3.9 Phương trình log ( x + 1) = có nghiệm A x = −3 B x = C x = D x = Câu 3.10 Có giá trị x thoả mãn 5x = 5x ? www.thuvienhoclieu.com Trang A www.thuvienhoclieu.com C D B Câu 3.11 Tìm nghiệm phương trình log3 ( x − ) = A x = B x = C x = 11 Câu 3.12 Tích tất nghiệm phương trình 3x A −2 B −1 C 2 +x D x = 10 = D Câu 3.13 Gọi S tập nghiệm phương trình log5 ( x + 1) − log5 ( x − 3) = Tìm S A S = −2; 4  −1 + 13 −1 − 13    B S =  ;  2      −1 + 13  D S =     C S = 4 Câu 3.14 Tìm tập nghiệm S phương trình log ( x + ) = A S = −4;12 C S = 4;8 B S = 4 D S = 12 Câu 3.15 Nghiệm phương trình log x = A x = B x = C x = D x = Câu 3.16 Tìm tất nghiệm phương trình log ( x − 5) = A x = 21 B x = C x = 11 D x = 13 Câu 3.17 Tìm nghiệm phương trình log3 ( 3x − ) = A x = 29 B x = 11 C x = 25 D x = 87 Câu 3.18 Tìm nghiệm phương trình 9x − 3x − = A x = −2 B x = C x = D x = Câu 3.19 Giải phương trình log ( x − ) = A x = B x = C x = D x = Câu 3.20 Cho phương trình log ( x − 1)  log 25 ( x+1 − ) = Khi đặt t = log ( x − 1) , ta phương trình đây? A t − = B t + t − = 2t + 2t − = CÂU Thể tích khối lập phương cạnh A B C Câu 4.1 Thể tích khối lập phương cạnh 2a C t − = D D A 8a3 B 2a3 C a D 6a Câu 4.2 Cho hình lập phương ABCD.A /BCD có cạnh a Tính thể tích V khối chóp D ABCD www.thuvienhoclieu.com Trang www.thuvienhoclieu.com a a a3 B V = C V = D V = a3 Câu 4.3 Hình lập phương có đường chéo mặt bên cm Tính thể tích khối lập phương A V = 3 A 2cm3 B 16 2cm C cm3 D 2cm Câu 4.4 Hình lập phương có đường chéo mặt bên cm Tính thể tích khối lập phương A 2cm3 B 16 2cm C cm3 D 2cm Câu 4.5 Hình lập phương có đường chéo mặt bên cm Tính thể tích khối lập phương A 2cm3 B 16 2cm C cm3 D 2cm Câu 4.6 Hình lập phương có đường chéo mặt bên cm Tính thể tích khối lập phương A 2cm3 B 16 2cm C cm3 D 2cm Câu 4.7 Nếu cạnh hình lập phương tăng lên gấp lần thể tích hình lập phương tăng lên lần? A 27 B C D Câu 4.8 Nếu cạnh hình lập phương tăng lên gấp lần thể tích hình lập phương tăng lên lần? A 27 B C D Câu 4.9 Tính thể tích khối lập phương ABCD.A /BCD cạnh a a3 a3 a3 A B C a D Câu 4.10 Tính thể tích khối lập phương ABCD.A /BCD cạnh a A a3 B a3 C a D a3 Câu 4.11 Tính thể tích V khối lập phương ABCD.A /BCD biết AC = 2a 3 6a D V = 3a3 Câu 4.12 Tính thể tích V khối lập phương ABCD.A /BCD biết AC = 2a A V = 8a3 C V = B V = a3 6a D V = 3a3 Câu 4.13 Tính thể tích V khối lập phương ABCD.A /BCD biết AC = 2a A V = 8a3 C V = B V = a3 6a D V = 3a3 Câu 4.14 Một hộp đựng thực phẩm có dạng hình lập phương có diện tích tồn phần 150 dm Thể tích khối hộp A V = 8a3 C V = B V = a3 A 125 cm3 B 125 dm3 C 125 dm D 125 cm Câu 4.15 Một khối lập phương tích 2a Cạnh hình lập phương A 2a B 2a C 2a D 3a CÂU Tập xác định hàm số y = log x A  0; + ) B ( −; + ) C ( 0; + ) www.thuvienhoclieu.com D  2; + ) Trang www.thuvienhoclieu.com 3− x Câu 5.1 Tập xác định hàm số y = log 2x B D = ( 0;3 A D = ( 3; + ) C D = ( −;0 )  ( 3; + ) D D = ( 0;3) Câu 5.2 Tập xác định hàm số y = log ( x − ) A R B R \ 2 ( 2; +  ) C D  2; + ) D  2; + ) Câu 5.3 Tập xác định hàm số y = log ( x − ) A R B R \ 2 ( 2; +  ) C ( Câu 5.4 Tìm tập xác định hàm số y = log x − 3x + ) A ( −;1)  ( 2; + ) B (1;2) C Câu 5.5 Tập xác định hàm số y = ( x − 3x + )  A R \ 1; 2 B ( −;1)  ( 2; + ) ( 2; +  ) D ( −;1) C (1;2) D ( −;1 2; + ) Câu 5.6 Tìm tập xác định hàm số y = log ( x + 1) A D = ( −; −1) C D =  −1; + ) B D = ( −1; + ) D D = R \ 1 Câu 5.7 Trong hàm số sau, hàm số có tập xác định với hàm số y = x ? A y = x B y = x Câu 5.8 Tìm tập xác định D hàm số y = e x A D = R C y = x −2 x D y = x B D =  0; 2 C D = R \ 0; 2 D D =  Câu 5.9 Tập xác định D hàm số y = log 2018 ( x − 1) 1  C D =  ; +  2  Câu 5.10 Tìm tập xác định D hàm số y = x e −e A D = ( 0; + ) A D = (ln5; + ) B D = R B D = [ln5; +) C D = R \ 5 1  D D =  ; +  2  D D = ( 5; + ) Câu 5.11 Tập xác định hàm số y = log x www.thuvienhoclieu.com Trang www.thuvienhoclieu.com A  0; + ) B R \ 0 C R x+3 x−2 Câu 5.12 Tìm tập xác định D hàm số y = log A D = ( −; −3  ( 2; + ) ( 0; + ) D B D = ( 2; + ) C D = ( −3; ) D D = ( −; −3)  ( 2; + ) Câu 5.13 Tìm tập xác định D hàm số y = log ( − x ) A D = ( 3; + ) B D = R \ 3 Câu 5.14 Hàm số y = log (x − 4x ) D D = R có tập xác định B D =  0; 4 A D = R \ 0; 4 C D = ( −;3) C D = ( −;0 )  ( 4; + ) D D = ( 0; ) Câu 5.15 Tập xác định D hàm số y = ( x + ) B D = ( −2; + ) A D = R \ 2 C D = ( 0; + ) D D = R Câu 5.16 Tập xác định D hàm số f ( x ) = ln ( − x ) A D = ( −; ) B D = ( 4; + ) C D = R \ 4 D D = ( −; 4 Câu 5.17 Hàm số y = log3 ( − x ) có tập xác định 3  A  ; +  2  3  B  −;  2  3  C  −;  2  D R Câu 5.18 Tập xác định hàm số y = log ( x − 1) + log ( x − 3) A D = (1;3) B D = ( −;1) C D = ( 3; + ) D D = ( −;1)  ( 3; + ) Câu 5.19 Tập xác định D hàm số y = ( x − 3x − ) A D =  −1; 4 B D = ( −1; ) −3 C D = R \ −1; 4 D D = ( −; −1)  ( 4; + ) Câu 5.20 Hàm số y = log ( x − x ) có tập xác định A ( 0; + ) B ( 0; ) C R D ( 2;6 ) CÂU Hàm số F ( x ) nguyên hàm hàm số f ( x ) khoảng K www.thuvienhoclieu.com Trang www.thuvienhoclieu.com A F  ( x ) = − f ( x ) , x  K B f  ( x ) = F ( x ) , x  K C F  ( x ) = f ( x ) , x  K D f  ( x ) = − F ( x ) , x  K Câu 6.1 Tìm họ nguyên hàm F ( x ) hàm số f ( x ) = A F ( x ) = B F ( x ) = ln x + + C ln x + + C ln C F ( x ) = 5x + ln x + + C D F ( x ) = ln ( x + ) + C Câu 6.2 Cho hàm số f ( x ) = x + e x Tìm nguyên hàm F ( x ) hàm số f ( x ) thỏa mãn F ( ) = 2019 A F ( x ) = e x − 2019 B F ( x ) = x + e x − 2018 C F ( x ) = x + e x + 2017 D F ( x ) = x + e x + 2018 Câu 6.3 Họ nguyên hàm hàm số f ( x ) = 3x − A x3 + C B x3 + x+C C 6x + C D x3 − x + C Câu 6.4 Hàm số f ( x ) = cos ( x + ) có nguyên hàm A − sin ( x + ) + x D − B C sin ( x + ) − sin ( x + ) − sin ( x + ) + Câu 6.5 Cho f ( x ) , g ( x ) hàm số có đạo hàm liên tục R , k R Trong khẳng định đây, khẳng định sai? A   f ( x ) − g ( x ) dx =  f ( x ) dx − g ( x ) dx C  kf ( x ) dx = k  f ( x ) dx D  B  f  ( x ) dx = f ( x ) + C  f ( x ) + g ( x )  dx =  f ( x ) dx +  g ( x ) dx Câu 6.6 Họ nguyên hàm hàm số f ( x ) = x + cos x A x − sin x + C B x + sin x + C C x − sin x + C www.thuvienhoclieu.com D x3 + sin x + C Trang www.thuvienhoclieu.com Câu 6.7 Họ nguyên hàm hàm số f ( x ) = x3 + x A x x3 + +C B x4 + x3 C 3x2 + x D x + x 4 Câu 6.8 Tìm họ nguyên hàm hàm số f ( x ) = 52 x ? A 2x 2x 5 dx = 2.5 ln5 +C B 52 x + C ln 2x 5 dx = 25x +1 D 5 dx = + C x +1 25x C 5 dx = +C ln 2x 2x Câu 6.9 Nguyên hàm hàm số f ( x ) = x3 + x − là: B 12 x + + C A x4 + x2 + x + C C x + x − x + C D x − x − x + C 2 Câu 6.10 Họ nguyên hàm hàm số y = cos x + x A sin x + x +C B sin x + x2 + C C − sin x + x +C D − sin x + x2 + C x3 Câu 6.11 Nếu  f ( x ) dx = + e x + C f ( x ) A f ( x ) = 3x + e x B f ( x ) = x4 + ex C f ( x ) = x + e x Câu 6.12 Nguyên hàm hàm số f ( x ) = x 2019 , (xR) A F ( x ) = 2019 x 2018 + C , B F ( x ) = x 2020 + C , C F ( x ) = x 2020 + C, 2020 (C  R ) (C  R ) x4 + ex 12 hàm số hàm số đây? D F ( x ) = 2018x 2019 + C , D f ( x ) = (C  R ) (C  R ) Câu 6.13 Hàm số F ( x ) = e x nguyên hàm hàm số đây? A f ( x ) = xe x2 B f ( x ) = x e x2 C f ( x ) = e x2 ex D f ( x ) = 2x −x Câu 6.14 Tìm tất nguyên hàm hàm số f ( x ) = A 3− x +C ln B − 3− x +C ln C −3− x + C D −3− x ln3 +C Câu 6.15 Tìm tất nguyên hàm hàm số f ( x ) = sin x www.thuvienhoclieu.com Trang 10 www.thuvienhoclieu.com Đồ thị hàm số có đường tiệm cận đứng? f (3 − x ) − A B C D Câu 43.9 Cho hàm số y = f ( x ) liên tục R có bảng biến thiên hình sau: Hỏi hàm số y = f ( x ) có cực trị? A B C D CÂU 44 Cho hình trụ có chiều cao 6a Biết cắt hình trụ cho mặt phẳng song song với trục cách trục khoảng 3a , thiết diện thu hình vng Thể tích khối trụ giới hạn hình trụ cho A 216 a3 B 150 a3 C 54 a3 D 108 a3 Câu 44.1 Cho hình trụ có bán kính đáy a Cắt hình trụ mặt phẳng, song song với trụ a hình trụ cách trục hình trụ khoảng ta thiết diện hình vng Tính thể tích V khối trụ cho A V =  a3 B V = 2 a C V = 2 a3 D V =  a3 Câu 44.2 Cho hình trụ có thiết diện qua trục hình vuông cạnh 2a Mặt phẳng (P) song trục cách trục khoảng a Tính diện tích thiết diện hình trụ cắt mặt song với phẳng (P) A 3a B a C Аa D 3a Câu 44.3 Cho hình trụ có bán kính đáy a Cắt hình trụ mặt phẳng (P) song song với trục hình trụ cách hình trụ khoảng a ta thiết diện hình vng Tính thể tích khối trụ A 3 a3 B  a 3 C  a3 D  a3 Câu 44.4 Một hình trụ có bán kính đáy a , mặt phẳng qua trục cắt hình trụ theo thiết diện có diện tích 8a Tính diện tích xung quanh hình trụ A 4 a2 B 8 a C 16 a D 2 a 3R Câu 44.5 Cho hình trụ có bán kính đáy R chiều cao Mặt phẳng ( ) song www.thuvienhoclieu.com Trang 86 www.thuvienhoclieu.com R song với trục hình trụ cách trục khoảng Diện tích thiết diện hình trụ tth cắt mặt phẳng (α) 2R2 3R 2 3R 2R2 B C D 2 Câu 44.6 Cắt khối trụ mặt phẳng qua trục ta thiết diện hình chữ nhật ABCD có AB CD thuộc hai đáy hình trụ, AB = 4a, AC = 5a Thể tích V khối trụ A A V = 16 a3 B V = 4 a3 C V = 12 a3 D V = 8 a3 Câu 44.7 Cho hình trụ có thiết diện qua trục hình vng có cạnh 4a Diện tích xung quanh S hình trụ A S = 4 a B S = 8 a2 C S = 24 a D S = 16 a2 Câu 44.8 Khi cắt khối trụ (T) mặt phẳng song song với trục cách trục trụ (T) khoảng a ta thiết diện hình vng có diện tích 4a Tính thể tích V khối trụ (T) A V = 7 a3 B V = C V =  a 7 a D V = 8 a3 Câu 44.9 Một hình trụ có bán kinh r = cm khoảng cách hai đáy h = cm Cắt khối trụ mặt phẳng song song với trục cách trục cm Diện tích thiết diện tạo thành A 56 cm2 B 55 cm2 C 53 cm2 D 46 cm Câu 44.10 Cho khối trụ T có trục OO , bán kính r thể tích V Cắt khối trụ T thành hai phần mặt phẳng (P) song song với trục cách trục khoảng Gọi V1 thể tích phần khơng chứa trục OO Tính tỉ số A V1 = − V 4 B V1  = − V C r (như hình vẽ) V1 V V1  − = V 2 D V1 − = V 4 Câu 44.11 Cho khối trụ có bán kính đáy r chiều cao h Cắt khối trụ mặt phẳng r Mặt phẳng (P) chia khối trụ làm hai phần Gọi V1 phần chứa tâm đường trịn đáy V2 phần khơng chứa tâm đường tròn đáy (P) song song với trục cách trục khoảng Tính tỉ số V1 V2 www.thuvienhoclieu.com Trang 87 A www.thuvienhoclieu.com V V  −2 B = + C = V2 V2 3 + V1 3 − = V2 3 − D V1 3 + = V2  − Câu 44.12 Cho khối trụ có chiều cao 20 Cắt khối trụ mặt phẳng thiết diện hình elip có độ dài trục lớn 10 Thiết diện chia khối trụ ban đầu thành hai nửa, nửa tích V1 , nửa tích V2 Khoảng cách từ điểm thuộc thiết diện gần đáy điểm thuộc thiết diện xa đáy tới đáy 14 Tính tỉ số A 11 20 B 11 C V1 V2 20 D 11 Câu 44.13 Một hình trụ có chiều cao 9a Cắt khối trụ mặt phẳng song song với trục cách trục đoạn d = 3a ta thiết diện có diện tích S = 72a Thể tích khối trụ A 225 a3 B 70 a D 45 a3 C 350 a3 CÂU 45 Cho hàm số f ( x ) có f ( ) = Khi   f ( x ) dx A 1042 225 B 208 225 C 242 225 149 225 D Câu 45.1 Cho hàm số y = f ( x ) liên tục R thỏa mãn  f ( x ) dx =  f ( x ) dx = Tính tích phân I =  f ( 3x − ) dx −1 A I = B I = −2 D I = C I = Câu 45.2 Cho hàm số f ( x ) thoả mãn  2 x ln ( x + 1) + xf  ( x ) dx = f ( 3) = Biết  f ( x ) dx = a + b ln với a, b số thực dương Giá trị a + b A 35 B 29 C 11 D Câu 45.3 Cho hàm số f ( x ) liên tục R f ( ) = 16,  f ( x ) dx = Tính tích phân I = x  f  ( x ) dx A 13 B 12 C 20 D www.thuvienhoclieu.com Trang 88 www.thuvienhoclieu.com Câu 45.4 Cho hàm số y = f ( x ) có đạo hàm liên tục đoạn  0;1 thỏa mãn f ( ) = Biết  f ( x ) dx = A  f  ( x ) cos  B  x dx = 3 Tích phân C   f ( x ) dx D Câu 45.5 Cho hàm số f ( x ) có đạo hàm liên tục   −1;1 thỏa mãn f (1) = 7, xf ( x ) dx = 1 Khi x f  ( x ) dx A B C D Câu 45.6 Cho hàm số f ( x ) có đạo hàm cấp hai liên tục R , thỏa mãn f ( ) = f ( ) = 0, max f  ( x ) = 0;2 A 11 12 B  f ( x ) dx = Tính  f ( x ) dx 2 11 24 C 37 12 D 37 24 Câu 45.7 Cho hàm số f ( x ) thỏa mãn f  ( x ) = ( x + 1) e x f ( ) = Tính f ( ) A f ( ) = 4e2 + B f ( ) = 2e2 + C f ( ) = 3e2 + D f ( ) = e2 + Câu 45.8 Cho hàm số f ( x ) có đạo hàm liên tục đoạn  0; 2 thỏa mãn f ( ) = 2, 2 0 (2 x − 4) f  ( x ) dx = Tính I =  f ( x ) dx A I = −2 B I = −6 D I = C I = Câu 45.9 Cho hàm số f ( x ) có đạo hàm liên tục đoạn  0;1 thỏa mãn f ( ) = 6,  ( x − ) f  ( x ) dx = Tích phân A −3 B −9  f ( x ) dx có giá trị C D CÂU 46 Cho hàm số f ( x ) có bảng biến thiên sau: www.thuvienhoclieu.com Trang 89 www.thuvienhoclieu.com 5 Số nghiệm thuộc đoạn 0;  phương trình f ( sin x ) =   A B C D Câu 46.1 Cho hàm số y = f ( x ) = ax3 + bx + cx + d có bảng biến thiên sau: Khi f ( x ) = m có bốn nghiệm phân biệt x1  x2  x3  A  m  B  m  C  x4 khi:  m  D  m  Câu 46.2 Cho hàm số y = f ( x ) có bảng biến thiên sau Đồ thị hàm số y = f ( x − 2017 ) + 2018 có điểm cực trị? A B C D Câu 46.3 Cho hàm số y = f ( x ) = ax3 + bx + cx + d có bảng biến thiên sau: Khi f ( x ) = m có bốn nghiệm phân biệt x1  x2  x3  A  m  B  m  C  x4 khi:  m  D  m  Câu 46.4 Cho hàm số y = f ( x ) liên tục R có bảng biến thiên sau www.thuvienhoclieu.com Trang 90 www.thuvienhoclieu.com Biết f ( )  , hỏi phương trình f ( x ) = f ( ) có nghiệm? A B C D Câu 46.5 Cho hàm số y = f ( x ) liên tục R có bảng biến thiên sau f ( x − 2018 ) + = m có bốn nghiệm Tìm tất giá trị tham số m cho phương trình thực phân biệt A −3  m  B  m  C Khơng có giá trị m D  m  Câu 46.6 Cho hàm số y = f ( x ) có bảng biến thiên sau Đồ thị hàm số y = f ( x − ) − n + m 2018 có điểm cực trị với m, n tham số thực  n  3? A B C D Câu 46.7 Cho hàm số y = f ( x ) = ax3 + bx + cx + d có bảng biến thiên sau Khi A f ( x ) = m có bốn nghiệm phân biệt x1  x2  x3   m  B  m   x4 C  m  D  m  Câu 46.8 Cho hàm số y = f ( x ) có bảng biến thiên hình bên www.thuvienhoclieu.com Trang 91 www.thuvienhoclieu.com Phương trình f ( x − x ) − = có nghiệm thực phân biệt? A B C D CÂU 47 Xét số thực dương a, b, x, y thỏa mãn a  1, b  a x = b y = ab Giá trị nhỏ biểu thức P = x + y thuộc tập hợp đây? A (1; )  5 B  2;   2 5  D  ;3  2  C [ 3;4 ) Câu 47.1 Cho a, b, c  Biết biểu thức P = log a ( bc ) + logb ( ac ) + 4log c ( ab ) đạt giá trị nhỏ m logb c = n Tính giá trị m + n A m + n = 14 B m + n = 25 C m + n = 12 D m + n = 10 Câu 47.2 Cho x, y  thỏa mãn log ( x + y ) = log x + log y Khi đó, giá trị nhỏ biểu thức P = x2 y2 + 1+ y 1+ x 32 31 29 C D 5 Câu 47.3 Cho x, y số dương thỏa mãn xy  y − Giá trị nhỏ A P= B ( 2x + y ) x + ln x + 2y a + ln b Tính ab y A ab = 45 B ab = 81 C ab = 115 D ab = 108 Câu 47.4 Cho số thực a, b thỏa mãn điều kiện  b  a  Tìm giá trị nhỏ biểu thức P = log a ( 3b − 1) A A = + 8log 2  a −   a B 3 C Câu 47.5 Xét số thực a, b thỏa mãn điều kiện D  b  a  Tìm giá trị nhỏ biểu thức  3b −  P = log a   + 12log b a − a −   a C P = D P = 2 Câu 47.6 Cho hai số thực dương x, y thỏa mãn xy  y − Giá trị nhỏ biểu thức A P = 13 B P = www.thuvienhoclieu.com Trang 92 P= ( 2x + y ) x www.thuvienhoclieu.com x + 2y biểu diễn dạng a + ln b với a Q, b nguyên dương Tích y + ln ab A 45 B 81 C 108 D 115 Câu 47.7 Cho số a, b  thỏa mãn log a + log3b = Tìm giá trị lớn P = log3a + log 2b log + log3 A B log3 + log C ( log + log3 ) D log + log Câu 47.8 Cho hai số thực a, b thỏa mãn điều kiện a + b2  log a2 +b2 ( a + b )  Giá trị lớn biểu thức P = 2a + 4b − A 10 B 10 C 10 D 10 Câu 47.9 Cho hàm số y = x + − x ln x Gọi M , m giá trị lớn giá trị nhỏ hàm số đoạn [1; 2] Khi tích Mm A + ln2 B + ln5 C − ln5 D − ln2 x+ y Câu 47.10 Cho hai số thực x, y thỏa mãn log = x ( x − 3) + y ( y − 3) + xy Tìm x + y + xy + giá trị lớn biểu thức P = 37 − 249 69 − 249 69 + 249 C D 94 94 94 x+m CÂU 48 Cho hàm số f ( x ) = (m tham số thực) Gọi S tập hợp tất giá trị m x +1 A 43 + 249 94 x + 2y + x+ y+6 B cho f ( x ) + max f ( x ) = Số phần tử S [0;1] [0;1] A B C D Câu 48.1 Gọi S tập hợp tất giá trị thực tham số m cho giá trị lớn ò P hàm số y = A x + mx + m [1; 2] Số phần tử S x +1 B C D Câu 48.2 Gọi S tập hợp tất giá trị thực tham số m cho giá trị lớn hàm số y = A x + mx + m ˆ 1; 2 Số phần tử S tren x +1 B C D Câu 48.3 Gọi S tập hợp tất giá trị thực tham số m cho giá trị lớn www.thuvienhoclieu.com Trang 93 www.thuvienhoclieu.com hàm số y = x + mx + m trên[1; 2] Số phần tử S x +1 A B C D Câu 48.4 Gọi S tập hợp tất giá trị tham số thực m cho trị lớn hàm fa số y = 3x − x + 2m − đoạn  −2;3 đạt giá trị nhỏ Số phần tử tập S A B C D Câu 48.5 Gọi S tập hợp tất giá trị tham số thực m cho giá trị nhỏ tthsp hàm số y = − x3 − 3x + m đoạn  0; 2 −3 Tổng tất phần tử S A B C D Câu 48.6 Gọi S tập hợp tất giá trị tham số thực m cho trị lớn hàm số y = 3x − x + 2m − đoạn  −2;3 đạt giá trị nhỏ Số phần tử tập S A B C D Câu 48.7 Gọi S tập hợp tất giá trị tham số thực m cho giá trị nhỏ hàm số y = sin x + cos x + m Số phần tử S A B C D Câu 48.8 Gọi S tập hợp tất giá trị nguyên tham số thực m cho giá trị lớn x − 14 x + 48 x + m − 30 đoạn  0; 2 không vượt 30 Tổng giá trị hàm số y = phần tử tập hợp S bao nhiêu? A 108 B 136 C 120 D 210 Câu 48.9 Gọi S tập hợp tất giá trị thực tham số m cho giá trị lớn hàm số y= x + mx + m [1; 2] Số phần tử tập S x +1 A B C D Câu 48.10 Gọi S tập hợp tất giá trị tham số m để bất phương trình ( ) ( ) m2 x − x3 − m x3 − x − x + e x −1  với x  R Số tập S A B C D Câu 48.11 Gọi S tập hợp tất giá trị thực tham số m để bất phương trình x + − x + x 2mx + 2m  với x  R Biết S =  a; b  Giá trị a + 12b A B C D Câu 48.12 Gọi S tập hợp tất giá trị thực tham số m cho giá trị lớn hàm số y = x3 − 3x + m đoạn  0; 2 Tập hợp S có phần tử? www.thuvienhoclieu.com Trang 94 www.thuvienhoclieu.com A B C D Câu 48.13 Gọi S tập hợp tất giá trị tham số thực m cho giá trị lớn hàm số y = x3 − 3x + m đoạn  0; 2 Số phần tử S A B C D CÂU 49 Cho hình hộp ABCD.ABCD có chiều cao diện tich đáy Gọi M,N, P Q tâm mặt bên ABBA, BCC B, CDDC DAAD Thể tích khối đa diện lồi có đỉnh điểm A, B, C , D, M , N , P Q A 27 B 30 C 18 D 36 Câu 49.1 Cho hình hộp ABCD.ABCD có AB = a, BC  = a , đường thẳng AB BC tạo với mặt phẳng (ABCD) góc 45o , tam giác AAB vng B , tam giác ACD vng D Tính thể tích V khối hộp ABCD.ABCD theo a 2a B V = A V = 2a C V = a3 D V = a3 Câu 49.2 Cho hình hộp ABCD.ABCD có đáy hình chữ nhật với AB = 3, AD = Hai mặt ( ABBA ) bên ( ADDA) tạo với đáy góc 45o 60o Tính thể tích khối hộp biết cạnh bên hình hộp A B C D Câu 49.3 Cho hình hộp chữ nhật ABCD.ABCD có tổng diện tích tất mặt 36, độ dài đường chéo AC = Hỏi thể tích khối hộp lớn bao nhiêu? A B 16 C D 24 Câu 49.4 Cho hình hộp chữ nhật ABCD.ABCD Gọi M trung điểm BB Mặt phẳng (MDC’) chia khối hộp chữ nhật thành hai khối đa diện, khối chứa đỉnh C khối chứa đỉnh V A Gọi V1 , V2 thể tích hai khối đa diện chứa C A Tính V2 A V1 = V2 24 B V1 = V2 17 C V1 = V2 12 D V1 17 = V2 24 Câu 49.5 Cho hình hộp chữ nhật ABCD.ABCD tích G trọng tâm BCD Thể tích khối chóp G ABC A V = 1 B V = V = D V = 12 18 Câu 49.6 Cho hình hộp ABCD.ABCD có đáy ABCD hình thoi tâm O , cạnh a , góc ABC = 60o Biết AO ⊥ ( ABCD ) cạnh bên với đáy góc 60o Tính thể tích V khối đa diện OABCD www.thuvienhoclieu.com Trang 95 www.thuvienhoclieu.com a a a3 3a B V = C V = D V = 12 Câu 49.7 Cho hình hộp chữ nhật ABCD.ABCD Gọi M trung điểm BB Mặt phẳng A V = ( MDC ) 3 chia khối hộp chữ nhật thành hai khối đa diện, khối chứa đỉnh C khối chứa đỉnh A Gọi V1 , V2 thể tích hai khối đa diện chứa C A Tính A V1 = V2 24 B V1 = V2 17 C V1 = V2 12 V1 V2 V1 17 = V2 24 D Câu 49.8 Cho hình hộp chữ nhật ABCD.ABCD tích G trọng tâm BCD’ Thể tích khối chóp G ABC A V = B V = C V = 12 D V = 18 Câu 49.9 Cho hình hộp chữ nhật ABCD.ABCD có tổng diện tích tất mặt 36, độ dài đường chéo AC  Hỏi thể tích khối hộp lớn bao nhiêu? A B C 16 D 24 Câu 49.10 Cho hình hộp ABCD.ABCD có đáy hình thoi cạnh a 3, BD = 3a , hình chiếu vng góc B mặt phẳng ( ABC D ) trùng với trung điểm AC Gọi ( ) góc tạo hai mặt phẳng (ABCD) (CDD’C’), cos  = 21 Tính thể tích khối hộp 3a 9a 3a 3 3a A B C D 4 4 Câu 49.11 Cho hình hộp ABCD.ABCD có tất cạnh góc phẳng đỉnh A 60o Tính khoảng cách hai đường thẳng AB AC 22 B C D 11 11 11 11 Câu 49.12 Cho hình hộp ABCD.ABCD tích V Gọi M , N , P trung điểm cạnh AB, AC , BB Tính thể tích khối tứ diện CMNP A A V 48 B V C V 48 D V Câu 49.13 Cho hình hộp ABCD.ABCD có đáy ABCD hình vng cạnh 2a AA = AB = AC = 2a www.thuvienhoclieu.com Trang 96 www.thuvienhoclieu.com Thể tích khối tứ diện AB’D’C 2a A 4a C 6a B D 3a CÂU 50 Có số nguyên x cho tồn số thực y thỏa mãn ( log ( x + y ) = log x + y ) ? A B C D Vô số Câu 50.1 Có số nguyên m  (0 ; 2018 ) để phương trình m + 10 x = me x có hai nghiệm phân biệt? A B 2017 C 2016 D 2007  1− 2x  Câu 50.2 Xét số thực dương x, y thỏa mãn ln   = 3x + y − Tìm giá trị nhỏ  x+ y  1 +1 Pmin P = + x xy A Pmin = B Pmin = 16 C Pmin = D Pmin = Câu 50.3 Cho x, y số thực dương thỏa mãn log biểu thức T = A + 2x + y +1 = x + y Tìm giá trị nhỏ x+ y + x y B C + D   Câu 50.4 Tìm tất giá trị thực tham số a  thỏa mãn  2a + a    A  a  B  a  2017 2017 C  a  2017     22017 + 2017    a D a  2017 Câu 50.5 Cho a, b, c số thực thuộc đoạn [1; 2] thỏa mãn log32 a + log32b + log32c  Khi biểu thức P = a3 + b3 + c3 − ( log a a + log 2bb + log 2c c ) đạt giá trị lớn tổng a + b + c A B 3 C D Câu 50.6 Cho hai số thực a, b thỏa mãn a + b2  log a2 +b2 ( a + b )  Giá trị lớn biểu thức P = 2a + 4b − A 10 B 10 C 10 D 10 ĐÁP ÁN www.thuvienhoclieu.com Trang 97 www.thuvienhoclieu.com www.thuvienhoclieu.com Trang 98 www.thuvienhoclieu.com www.thuvienhoclieu.com Trang 99 www.thuvienhoclieu.com www.thuvienhoclieu.com Trang 100 ... A 2? ?a2 B 4 a2 C 6 a2 D 5 a Câu 12. 6 Một hình trụ có bán kính đáy , r = a độ dài đường sinh l = 2a Diện tích tồn phần hình trụ A 2? ?a2 B 4 a2 C 6 a2 D 5 a Câu 12. 7 Một hình trụ có bán... ) = x + e x Câu 6. 12 Nguyên hàm hàm số f ( x ) = x 20 19 , (xR) A F ( x ) = 20 19 x 20 18 + C , B F ( x ) = x 20 20 + C , C F ( x ) = x 20 20 + C, 20 20 (C  R ) (C  R ) x4 + ex 12 hàm số hàm... phương trình mặt cầu tâm I bán kính R = A ( x + 2) + ( y − 2) ( x − 2) + ( y + 2) 2 + z2 = + z = 16 B D ( x + 2) + ( y − 2) ( x − 2) + ( y + 2) 2 + z = 16 C + z = Câu 23 . 12 Trong không gian với

Ngày đăng: 15/06/2022, 21:04

TỪ KHÓA LIÊN QUAN

w