1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 32 - Đề 14 pdf

3 254 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 128,52 KB

Nội dung

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 -2013 Môn thi : TOÁN A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 8 điểm) Câu 1: ( 2điểm) Cho hàm số y = 4x 3 + mx 2 – 3x 1. Khảo sát và vẽ đồ thị (C) hàm số khi m = 0. 2. Tìm m để hàm số có hai cực trị tại x 1 và x 2 thỏa x 1 = - 4x 2 Câu 2: (2điểm) 1. Giải hệ phương trình: 2 0 1 4 1 2 x y xy x y             2. Giải phương trình: cosx = 8sin 3 6 x         Câu 3: (2điểm) 1. Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), tam giác ABC vuông tại C ; M,N là hình chiếu của A trên SB, SC. Biết MN cắt BC tại T. Chứng minh rằng tam giác AMN vuông và AT tiếp xúc với mặt cầu đường kính AB. 2. Tính tích phân A = 2 ln .lnex e e dx x x  Câu 4: (2 điểm) 1. Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(4;5;6); B(0;0;1); C(0;2;0); D(3;0;0). Chứng minh các đường thẳng AB và CD chéo nhau. Viết phương trình đường thẳng (D) vuông góc với mặt phẳngOxy và cắt được các đường thẳngAB; CD. 2. Cho ba số thực dương a, b, c thỏa: 3 3 3 2 2 2 2 2 2 1 a b c a ab b b bc c c ca a          Tìm giá trị lớn nhất của biểu thức S = a + b + c B. PHẦN TỰ CHỌN: Thí sinh chỉ chọn câu 5a hoặc 5b Câu 5a: Theo chương trình chuẩn: ( 2 điểm) 1. Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4;5;6). Viết phương trình mặt phẳng (P) qua A; cắt các trục tọa độ lần lượt tại I; J; K mà A là trực tâm của tam giác IJK. 2. Biết (D) và (D’) là hai đường thẳng song song. Lấy trên (D) 5 điểm và trên (D’) n điểm và nối các điểm ta được các tam giác. Tìm n để số tam giác lập được bằng 45. Câu 5b: Theo chương trình nâng cao: ( 2 điểm) 1. Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng (D): x – 3y – 4 = 0 và đường tròn (C): x 2 + y 2 – 4y = 0. Tìm M thuộc (D) và N thuộc (C) sao cho chúng đối xứng qua A(3;1). 2. Tìm m để bất phương trình: 5 2x – 5 x+1 – 2m5 x + m 2 + 5m > 0 thỏa với mọi số thực x. Hết BÀI GIẢI TÓM TẮT(ĐỀ 22) A.PHẦN CHUNG: Câu 1: 2. TXĐ: D = R - y’ = 12x 2 + 2mx – 3 Ta có: ’ = m 2 + 36 > 0 với mọi m, vậy luôn có cực trị Ta có: 1 2 1 2 1 2 4 6 1 4 x x m x x x x                 9 2 m    Câu 2: 1. 2 0 (1) 1 4 1 2 (2) x y xy x y             Điều kiện: 1 1 4 x y        Từ (1) 2 0 x x y y      x = 4y Nghiệm của hệ (2; 1 2 ) 2. cosx = 8sin 3 6 x          cosx =   3 3sinx+cosx  3 2 2 3 3 3sin 9sin osx +3 3sinxcos os osx = 0 x xc x c x c   (3) Ta thấy cosx = 0 không là nghiêm (3)  3 2 3 3 tan 8t an x + 3 3 tanx = 0 x  tanx = 0 x = k    Câu 3: 1.Theo định lý ba đường vuông góc BC  (SAC)  AN  BC và AN  SC AN  (SBC)  AN  MN Ta có: SA 2 = SM.SB = SN.SC Vây MSN  CSB  TM là đường cao của tam giác STB  BN là đường cao của tam giác STB Theo định lý ba đường vuông góc, ta có AB  ST AB  (SAT) hay AB AT (đpcm) 2. 2 2 (ln ) ln (1 ln ) ln (1 ln ) e e e e dx d x A x x x x x       = 2 1 1 (ln ) ln 1 ln e e d x x x          = 2 2 ln(ln ) ln(1 ln ) e e x x e e   = 2ln2 – ln3 Câu 4: 1. +) (4;5;5) BA  uuur , (3; 2;0) CD   uuur , (4;3;6) CA  uuur , (10;15; 23) BA CD       uuur uuur  , . 0 BA CD CA      uuur uuur uuur  đpcm + Gọi (P) là mặt phẳng qua AB và (P)  (Oxy)  có VTPT 1 , n BA k      ur uuur r = (5;- 4; 0)  (P): 5x – 4y = 0 + (Q) là mặt phẳng qua CD và (Q)  (Oxy) có VTPT 1 , n CD k      ur uuur r = (-2;- 3; 0)  (Q): 2x + 3y – 6 = 0 Ta có (D) = (P)(Q)  Phương trình của (D) 2. Ta có: 3 2 2 2 3 a a b a ab b     (1)  3a 3 ≥ (2a – b)(a 2 + ab + b 2 )  a 3 + b 3 – a 2 b – ab 2 ≥ 0  (a + b)(a – b) 2  0. (h/n) Tương tự: 3 2 2 2 3 b b c b bc c     (2) , 3 2 2 2 3 c c a c ac a     (3) Cộng vế theo vế của ba bđt (1), (2) và (3) ta được: 3 3 3 2 2 2 2 2 2 3 a b c a b c a ab b b bc c c ca a            Vậy: S ≤ 3  maxS = 3 khi a = b = c = 1 B. PHẦN TỰ CHỌN: Câu 5a: Theo chương trình chuẩn 1. Ta có I(a;0;0), J(0;b;0), K(0;0;c) ( ): 1 x y z P a b c     Ta có (4 ;5;6), (4;5 ;6) (0; ; ), ( ;0; ) IA a JA b JK b c IK a c         uur uur uuur uur Ta có: 4 5 6 1 5 6 0 4 6 0 a b c b c a c                  77 4 77 5 77 6 a b c              ptmp(P) 2.Ta có: n 2 2 5 5 n C C  = 45  n 2 + 3n – 18 = 0  n = 3 Câu 5b: 1.M  (D)  M(3b+4;b)  N(2 – 3b;2 – b) N  (C)  (2 – 3b) 2 + (2 – b) 2 – 4(2 – b) = 0  b = 0;b = 6/5 Vậy có hai cặp điểm: M(4;0) và N(2;2) , M’(38/5;6/5) và N’(-8/5; 4/5) 2. Đặt X = 5 x  X > 0 Bất phương trình đã cho trở thành: X 2 + (5 + 2m)X + m 2 + 5m > 0 (*) Bpt đã cho có nghiệm với mọi x khi và chỉ khi (*) có nghiệm với mọi X > 0  < 0 hoặc (*) có hai nghiệm X 1 ≤ X 2 ≤ 0 Từ đó suy ra m . ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 -2 013 Môn thi : TOÁN A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 8 điểm).  ur uuur r = (5 ;- 4; 0)  (P): 5x – 4y = 0 + (Q) là mặt phẳng qua CD và (Q)  (Oxy) có VTPT 1 , n CD k      ur uuur r = (-2 ;- 3; 0)  (Q):

Ngày đăng: 21/02/2014, 00:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN