1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 22 - Đề 19 doc

2 232 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 106,33 KB

Nội dung

PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) Cho hàm số 2x 3 y x 2    có đồ thị (C). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C) 2. Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt hai tiệm cận của (C) tại A, B sao cho AB ngắn nhất . Câu II (2 điểm) 1. Giải phương trình: 2( tanx – sinx ) + 3( cotx – cosx ) + 5 = 0 2. Giải phương trình: x 2 – 4x - 3 = x 5  Câu III (1 điểm): Tính tích phân: 1 2 1 dx 1 x 1 x      Câu IV (1 điểm) Khối chóp tam giác SABC có đáy ABC là tam giác vuông cân đỉnh C và SA vuông góc với mặt phẳng (ABC), SC = a . Hãy tìm góc giữa hai mặt phẳng (SCB) và (ABC) để thể tích khối chóp lớn nhất . Câu V ( 1 điểm ) Cho x, y, z là các số dương thỏa mãn 1 1 1 4 x y z    . CMR: 1 1 1 1 2 2 2 x y z x y z x y z          PHẦN TỰ CHỌN: Thí sinh chọn một trong hai phần A hoặc B A. Theo chương trình Chuẩn Câu VI.a.( 2 điểm ) 1. Tam giác cân ABC có đáy BC nằm trên đường thẳng : 2x – 5y + 1 = 0, cạnh bên AB nằm trên đường thẳng : 12x – y – 23 = 0 . Viết phương trình đường thẳng AC biết rằng nó đi qua điểm (3;1) 2. Trong không gian với hệ tọa độ Đêcác vuông góc Oxyz cho mp(P) : x – 2y + z – 2 = 0 và hai đường thẳng : (d) x 1 3 y z 2 1 1 2       và (d’) x 1 2t y 2 t z 1 t            Viết phương trình tham số của đường thẳng (  ) nằm trong mặt phẳng (P) và cắt cả hai đường thẳng (d) và (d’) . CMR (d) và (d’) chéo nhau và tính khoảng cách giữa chúng . Câu VIIa . ( 1 điểm ) : Tính tổng : 0 5 1 4 2 3 3 2 4 1 5 0 5 7 5 7 5 7 5 7 5 7 5 7 S C C C C C C C C C C C C       B. Theo chương trình Nâng cao Câu VI.b.( 2 điểm ) 1. Viết phương trình tiếp tuyến chung của hai đường tròn : (C 1 ) : (x - 5) 2 + (y + 12) 2 = 225 và (C 2 ) : (x – 1) 2 + ( y – 2) 2 = 25 2. Trong không gian với hệ tọa độ Đêcác vuông góc Oxyz cho hai đường thẳng : (d) x t y 1 2t z 4 5t           và (d’) x t y 1 2t z 3t            a. CMR hai đường thẳng (d) và (d’) cắt nhau . b. Viết phương trình chính tắc của cặp đường thẳng phân giác của góc tạo bởi (d) và (d’) . Câu VIIb.( 1 điểm ) : Giải phương trình :   5 log x 3 2 x   . thẳng (  ) nằm trong mặt phẳng (P) và cắt cả hai đường thẳng (d) và (d ) . CMR (d) và (d ) chéo nhau và tính khoảng cách giữa chúng . Câu VIIa . ( 1. đường thẳng : (d) x t y 1 2t z 4 5t           và (d ) x t y 1 2t z 3t            a. CMR hai đường thẳng (d) và (d ) cắt nhau .

Ngày đăng: 20/02/2014, 06:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN