1. Trang chủ
  2. » Luận Văn - Báo Cáo

phương pháp tối ưu hoá đàn kiến

43 683 5

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 43
Dung lượng 1,51 MB

Nội dung

TÓM TẮT Phương pháp tối ưu hóa đàn kiến Ant Colony Optimization – ACO là một phương pháp mới mà ngày nay người ta rất quan tâm vì những hiệu quả nổi trội của nó so với các phuoeng pháp

Trang 2

TÓM TẮT

Phương pháp tối ưu hóa đàn kiến (Ant Colony Optimization – ACO) là một

phương pháp mới mà ngày nay người ta rất quan tâm vì những hiệu quả nổi trội của nó

so với các phuoeng pháp khác trong giải quyết các bài toán tối ưu hóa tổ hợp

(Combinatorial optimization problems)

Khóa luận này trình bày một cách khái quát về phương pháp tối ưu hóa đàn kiến

(Ant Colony Optimization), và trình bày một phương pháp áp dụng của thuật toán tối

ưu hóa đàn kiến cho bài toán người chào hàng động (Dynamic Travelling Salesman Problem - DTSP) đã được công bố

Khóa luận đã cài đặt và kiểm chứng hiệu quả của thuật toán đồng thời đưa ra một cải tiến đối với thuật toán để nâng cao hiệu quả trong trường hợp bài toán đầu vào có kích thước lớn

Trang 3

MỤC LỤC

TÓM TẮT

BẢNG TỪ VIẾT TẮT

MỞ ĐẦU 1

CHƯƠNG 1 GIỚI THIỆU PHƯƠNG PHÁP ACO 3

1.1 Giới thiệu 3

1.2 Quá trình phát triển 6

1.3 Một số thuật toán ACO áp dụng cho bài toán TSP 9

1.3.1 Bài toán TSP 10

1.3.2 Ant System (AS) 12

1.3.3 Max-Min Ant System (MMAS) 15

1.3.4 Ant Colony System (ACS) 17

1.3.5 Hệ kiến đa mức (xem [15]) 19

1.4 Các nguyên tắc khi áp dụng tối ưu đàn kiến 20

1.4.2 Xác định các vệt mùi 21

1.4.3 Các thông tin heuristic 22

1.4.4 Kết hợp tìm kiếm địa phương 22

1.4.5 Điều chỉnh giữa sự học tăng cường và sự khám phá 23

1.4.6 Sử dụng giới hạn danh sách láng giềng 24

1.5 Các ứng dụng của ACO 25

CHƯƠNG 2 GIỚI THIỆU BÀI TOÁN DTSP 26

2.1 Bài toán DTSP 26

2.2 Các phương pháp giải bài toán DTSP 26

CHƯƠNG 3 SỬ DỤNG THUẬT TOÁN AS ĐỂ GIẢI QUYẾT BÀI TOÁN DTSP 28

3.1 Phân tích bài toán 28

3.2 Cải tiến AS cho phù hợp 29

CHƯƠNG 4 THỰC NGHIỆM VÀ ĐÁNH GIÁ 31

4.1 Thực nghiệm trên tsplib eil51 32

4.2 Nhận xét 34

PHẦN 5 KẾT LUẬN 37

THAM KHẢO 38

Trang 4

BẢNG TỪ VIẾT TẮT

STT Từ viết tắt Từ hoặc cụm từ

1 ACO

Ant Colony Optimization

(Tối ưu hóa đàn kiến)

2 AS

Ant System (Hệ kiến AS)

Travelling Salesman Problem

(Bài toán người chào hàng)

10 JSS

Job shop scheduling

(Bài toán lập lịch sản xuất)

11 g-best global-best

12 i-best iteration-best

Trang 5

MỞ ĐẦU

Hiện nay có rất nhiều bài báo, luận văn, cũng như các công trình nghiên cứu đề cập đến vấn đề tối ưu tổ hợp Nhiều phương pháp mới mẻ đã được đưa ra và đạt hiệu quả cao Tuy nhiên phần lớn các bài toán tối ưu tổ hợp được giải từ trước tới nay đều

là các bài toán tĩnh So với bài toán tĩnh thì bài toán động phức tạp hơn và ứng dụng của nó trong thực tế là nhiều hơn Chẳng hạn các ứng dụng trong định tuyến các gói tin trên mạng internet, trong các tổng đài điện thoại Một trong những cách tiếp cận có

hiệu quả đối với bài toán tối ưu tổ hợp tĩnh đó là phương pháp tối ưu hóa đàn kiến (Ant Colony Optimization- ACO) ACO là một phương pháp metaheuristic mới và đang được nhiều người quan tâm Thuật toán ACO đầu tiên (1991) đã mang lại nhiều ý tưởng và cảm hứng với mục đích cải tiến các thuật toán ACO để có thể áp dụng nó cho

nhiều bài toán khác nhau

Luận văn này trình bày một cách khái quát về các thuật toán ACO và kiểm chứng một phương pháp áp dụng ACO việc giải quyết bài toán ngươi chào hàng động (Dynamic Travelling Salesman Problem- DTSP) một dạng bài toán tối ưu tổ hợp động DTSP thực chất là mở rộng của bài toán người chòa hàng (Travelling Salesman Problem - TSP) nổi tiếng Đồng thời luận văn cũng chỉ ra nhược điểm của thuật toán

và đề xuất một cải tiến cho thuật toán nhằm nâng cao hiệu quả khi phải giải quyết bài toán có kích thước lớn Các kết quả thực nghiệm sẽ được đưa ra làm rõ cho cho hiệu quả của cải tiến thuật toán

Luận văn gồm có 5 chương

Chương 1 giới thiệu phương pháp tối ưu hóa đàn kiến: quá trình phát triển, các thuật

toán ACO áp dụng cho bài toán người chào hàng (Travelling Salesman Problem - TSP), và một số ứng dụng của ACO

Chương 2 luận văn giới thiệu về bài toán DTSP và các phương pháp để giải bài toán này

Trang 6

Chương 4 là phần cài đặt thực nghiệm kiểm chứng đánh giá thuật toán cũng như đánh

giá hiệu quả của cải tiến được đề xuất Ở đây luận văn sử dụng thư viện TSP chuẩn

được cung cấp trên mạng để làm đầu vào

Chương 5 là phần kết luận cuối cùng

Trang 7

CHƯƠNG 1 GIỚI THIỆU PHƯƠNG PHÁP ACO

Bài toán tối ưu hóa tổ hợp là bài toán hấp dẫn và thú vị bởi vì phần lớn chúng đều dễ để hình dung nhưng khó mà tìm ra lời giải cho chúng Nhiều bài toán tối ưu tổ hợp là các bài toán NP-khó và chúng không thể giải được trong thời gian đa thức Trên thực tế người ta thường giải quyết các bài toán này bằng các phương pháp xấp xỉ, chúng có nghiệm gần tối ưu và thời gian chạy khá ngắn Các thuật toán thuộc lại này

tạm gọi là các thuật toán heuristic , chúng được sử ụng để giải quyết các bài toán cụ thể Mở rộng của chúng là các thuật toán metaheuristic có thể giải quyết được cả một lớp các bài toán rộng lớn ACO là một phương pháp theo hướng tiếp cận như thế

1.1 Giới thiệu

Phương pháp tối ưu hóa đàn kiến (Ant Colony Optimization - ACO) là một mô hình để thiết kế các thuật toán metaheuristic cho việc giải quyết bài toán tối ưu hóa tổ hợp (Combinatorial optimization problems)

Bài toán tối ưu hóa tổ hợp

Bài toán tối ưu hóa tổ hợp được định nghĩa như sau:

Cho một tập C = {c 1, c2, cn}

Một tập con S của C là một phương án để giải quyết bài toán

Tập F 2 C là tập tất cả các phương án có thể, vì thế S là một phương án khả thi nếu S F

Một hàm giá trị z xác định như sau, z : 2 C R, mục tiêu là tìm phương án khả thi S* có giá trị nhỏ nhất: S* F và z(S*) z(S), S F

Nhiều bài toán tối ưu quan trọng trong lý thuyết và thực tế là các bài toán thuộc loại tối ưu hóa tổ hợp Ví dụ, bài toán tìm đường đi ngắn nhất, cũng như nhiều bài toán có

Trang 8

Một bài toán tối ưu hóa tổ hợp hoặc thuộc loại tìm giá trị nhỏ nhất hoặc là thuộc loại bài toán tìm giá trị lớn nhất Các phương pháp giải loại bài toán này phần lớn là

các phương pháp tìm kiếm heuristic (các thuật toán metaheuristic) Sau đây là các

thuật toán đã được sử dụng:

Thuật toán tìm kiếm cục bộ (Local search)

Thuật toán mô phỏng luyện kim (Simulated annealing)

Thuật toán GRASP(Greedy Randomized Adaptive Search Procedure)

Thuật toán bầy đàn (Swarm intelligence)

Thuật toán tìm kiếm theo bảng(Tabu search)

Thuật toán di truyền (Genetic algorithms)

Thuật toán tối ưu hóa đàn kiến (Ant colony optimization)

Metaheuristic

Metaheuristic là một tập các lý thuyết thuật toán được dùng để xác định các phương pháp heuristic sao cho nó phù hợp với một lớp bài toán rộng lớn Nói cách khác metaheuristic có thể được xem như là một phương pháp heuristic có tính tổng

quát, nó được thiết kế để hướng dẫn các heuristic trong các bài toán cơ bản hướng về những miền hứa hẹn trong không gian tìm kiếm các phương án tối ưu Một

metaheuristic là khung thuật toán tổng quát có thể áp dụng cho nhiều loại bài toán tối

ưu khác nhau tất nhiên là cùng với những điều chỉnh nho nhỏ để làm cho chúng trở nên phù hợp với các bài toán cụ thể

Tối ưu hóa đàn kiến (ACO)

ACO là một metaheuristic có thể áp dụng để giải quyết rất nhiều bài toán tối ưu

tổ hợp, thuật toán đầu tiên đã được phân loại trong lớp các thuật toán ACO được đưa ra

năm 1991(tham khảo [2], [3]) và kể từ đó nguyên tắc căn bản đã có nhiều thay đổi

khác nhau Đặc điểm cơ bản của các thuật toán ACO là sự kết hợp giữa thông tin

heuristic dựa vào đặc điểm của phương án có nhiều hứa hẹn và thông tin nhận được

qua các phương án tốt đã tìm được ở bước trước Các thuật toán metaheuristic là các thuật toán để tránh hiện tượng tối ưu cục bộ, nó điều chỉnh các heuristic: hoặc là heuristic tạo ra bắt đầu từ một phương án trống sau đó thêm các thành phần để nó trở

Trang 9

thành phương án hoàn chỉnh và tốt, hoặc là heuristic tìm kiếm cục bộ bắt đầu từ một

phương án hoàn chỉnh sau đó thay đổi lại một số thành phần để đạt được một phương

án tốt hơn

ACO (tham khảo [5]) bao gồm một lớp các thuật toán trong đó thuật toán đầu tiên

là Ant System (AS) được đề xuất bởi Colorni, Dorigo và Maniezzo (tham khảo [2], [3],

[4]) Ý tưởng chính làm cơ sở của thuật toán là lấy cảm hứng từ hành vi của đàn kiến trong tự nhiên, đó là quá trình tìm kiếm các lời giải song song dựa vào các dữ liệu cục

bộ và dựa vào cấu trúc động chứa các thông tin thu được qua các bược giải trước Sự tổng hợp các hành vi nổi trội từ quá trình giao tiếp giữa các phần tử trong quá trình tìm kiếm của chúng thực sự là có hiệu quả trong việc giải quyết các bài toán tối ưu hóa tổ hợp Các con kiến đã giao tiếp với nhau như thế nào và làm sao để chúng lựa chọn được con đường tốt hơn để đi Qua các nghiên cứu người ta biết được rằng các con

kiến trong tự nhiên để lại một vết hóa chất (pheromone trail), chúng có khả năng ứ

đọng, bay hơi và có thể nhận biết bởi các con kiến khác, các vệt mùi chính là phương tiện giao tiếp báo cho các con kiến khác thông tin về đường đi đó một cách gián tiếp Các con kiến sẽ lựa chọn đường đi nào có cường độ mùi lớn nhất tại thời điểm lựa chọn để đi, nhờ cách giao tiếp mang tính gián tiếp và cộng đồng này mà đàn kiến trong

tự nhiên tìm được đường đi ngắn nhất

Dựa vào ý tưởng trên, các thuật toán ACO sử dụng thông tin heuristic (chính là

thông tin có được do các dữ liệu đầu vào của bài toán) kết hợp thông tin từ các vết mùi

của các con kiến nhân tạo (artificial ant) để giải các bài toán tối ưu tổ hợp khó bằng

cách đưa về bài toán tìm đường đi tối ưu trên đồ thị cấu trúc tương ứng được xây dựng

từ đặc điểm của từng bài toán Mỗi con kiến nhân tạo xây dựng lời giải của chúng dựa

vào luật phân phối xác suất của các vết mùi nhân tạo và các thông tin heuristic

Lược đồ thuật toán ACO tổng quát áp dụng cho bài toán tối ưu tổ hợp tĩnh:

procedure ACOMetaheuristicStatic

Set parameters, initialize pheromone trails

while (termination condition not met) do

Trang 10

end-procedure

Như đã nhận định ở trên ACO thực chất là tìm kiếm ngẫu nhiên dựa vào thông tin heuristic kết hợp với thông tin học tăng cường So với các thuật toán heuristic cổ điển ACO mở rộng thêm quá trình học tăng cường, các con kiến tỏ ra thích nghi hơn với

môi trường dựa vào các vệt mùi tích lũy trên các cạnh đồ thị

1.2 Quá trình phát triển

Thuật toán Ant System (AS) là thuật toán đầu tiên trong lớp các thuật toán ACO được đề xuất bởi Dorigo trong luận án tiến sỹ của ông năm 1991(tham khảo [2], [3]) Thuật toán AS hướng đến giải quyết bài toán tìm đường đi tối ưu trong đồ thị Mặc dù thuật toán AS vẫn còn thua kém các thuật toán tốt nhất trong việc giải quyết bài toán

trên, tuy nhiên ý tưởng của nó thực sự là mới mẻ và tỏ ra có triển vọng Về sau đã có

rất nhiều cải tiến của thuật toán này do chính Dorigo đề xuất, cũng như rất nhiều các thuật toán ACO khác đều dựa trên ý tưởng của thuật toán AS song đã khắc phục được

một số nhược điểm của thuật toán này Có thể kể tên 2 cải tiến nổi trội nhất của thuật

toán AS là thuật toán ACS và thuật toán MMAS mà ta sẽ trình bày sau

Bảng 1 Một số các thuật toán ACO theo thứ tự xuất hiện

ACO algorithms Tác giả

Ant System Dorigo Maniezzo, & Colorni (1991)

Elitist AS Dorigo (1992); Dorigo, Maniezzo, &

Colorni (1996)

Ant-Q Gambardella & Dorigo (1995); Dorigo &

Gambardella (1996)

Ant Colony System Dorigo & Gambardella (1996)

Max-Min AS Stutzle & Hoos (1996, 2000); Stutzle (1999)

Rank-based AS Bullnheimer, Hartl, & Strauss (1997, 1999)

Trang 11

Hyper-cube AS Blum, Roli, & Dorigo (2001); Blum &

Dorigo (2004)

Thí nghiệm cầu đôi

Hành vi tìm thức ăn của các con kiến là dựa trên giao tiếp gián tiếp qua các vết

mùi (chất pheromone) Khi di chuyển từ nguồn thức ăn trở về tổ các con kiến để lại

mùi trên mặt đất, các con kiến có thể cảm nhận được mùi và chúng có khuynh hướng chọn theo xác suất các con đường mà được đánh dấu tập trung nhiều mùi nhất

Một số nghiên cứu để tìm hiểu hành vi của loài kiến đã được tiến hành mà một

trong những thí nghiệm nổi tiếng nhất là thí nghiệm của Deneubourg và các cộng sự

của ông năm 1989 (xem [7]), thí nghiệm này là cơ sở lý thuyết đầu tiên và cũng tạo ra

ý tưởng cho thuật toán ACO mà Dorigo đưa ra sau này Ông sử dụng một cầu đôi nối giữa một cái tổ của loài kiến Argentine là I humilis với nguồn thức ăn Ông đã thực hiện thí nghiệm nhiều lần và thay đổi tỉ số r giữa độ dài của 2 nhánh cầu

Hình 1 a – cầu đôi với 2 nhánh bằng nhau, b – cầu đôi với tỉ số các nhánh là 2

Trang 12

Biểu đồ 1 a – tỉ lệ các con kiến chọn 1 nhánh trong các lần thí nghiệm với trường hợp 2 nhánh bằng nhau

b – tỉ lệ các con kiến chọn 1 nhánh ngắn các lần thí nghiệm với trường hợp 1 nhánh dài gấp đôi nhánh kia

Trong thí nghiệm đầu tiên hai nhánh cầu có chiều dài bằng nhau (xem hình 1a) Khi bắt đầu các con kiến di chuyển tự dâo giữa tổ và nguồn thức ăn, người ta quan sát

tỉ lệ phần trăm các con kiến chọn các nhánh trong 2 nhánh qua thời gian Kết quả thu được như sau (xem đồ thị 1a), cho dù giai đoạn khởi đầu các lựa chọn ngẫu nhiên xảy

ra, song cuối cùng thì các con kiến đều hầu như chỉ đi qua một nhánh Kết quả này có thể được giải thích như sau Khi bắt đầu một lần thử không có vệt mùi nào trên cả 2 nhánh cầu, sau đó các con kiến sẽ không có cái gì đề làm căn cứ lựa chọn và chúng sẽ chọn ngẫu nhiên với cùng một xác suất bất kì nhánh nào trong 2 nhánh Còn nữa, vì các con kiến để lại mùi khi di chuyển, nên nhánh nào có số lượng lớn hơn các con kiến thì sẽ có lượng mùi để lại lớn hơn Đồng thời với lượng mùi lớn hơn thì nhánh đó cũng thu hút nhiều hơn các con kiến chọn nó Và cuối cùng các con kiến sẽ gần như chỉ kéo

về một nhánh duy nhất

Quá trình trên là một quá trình nội bộ, tự vận động là một ví dụ của hành vi tự tổ

chức (self-organizing) của loài kiến Quá trình lựa chọn một đường đi duy nhất của

loài kiến thể hiện hành vi mang tính tập thể của chúng dựa trên cơ sở các tương tác cục

bộ giữa các con kiến đơn lẻ trong đàn Đây cũng là một ví dụ của loại giao tiếp

stigmergy: các con kiến thay đổi hành động của chúng sử dụng giao tiếp gián tiếp bằng cách thay đổi môi trường trong khi di chuyển Thuật ngữ stigmergy được đưa ra bởi

Trang 13

Grasse để mô tả hình thức giao tiếp gián tiếp bằng cách thay đổi môi trường cái mà

ông đã quan sát được trong khi nghiên cứu sự phân cấp trong xã hội của 2 loài mối

Trong thí nghiệm thứ 2 tỉ số giữa độ dài của 2 nhánh được thay đổi r=2 Trong

trường hợp này, ở phần lớn các lần thử thì sau 1 thời gian tất cả các con kiến chỉ chọn nhánh ngắn hơn (xem sơ đồ 2b) Cũng như trong thí nghiệm đầu các con kiến sẽ phải lựa chọn một trong 2 nhánh để đi Khi bắt đầu thì cả 2 nhánh đối với các con kiến là như nhau và chúng sẽ chọn ngẫu nhiên Vì thế xét trung bình thì một nửa số kiến sẽ chọn nhánh ngắn và nửa còn lại chọn nhánh dài Ở thí nghiệm này ta sẽ thấy một sự khác biệt lớn so với thí nghiệm trước Vì một nhánh ngắn hơn nhánh kia do đó các con kiến chọn nhánh ngắn hơn sẽ đến nguồn thức ăn trước và chúng sẽ bắt đầu trở về tổ Tuy nhiên chúng sẽ phải chọn giữa nhánh ngắn và nhánh dài, mức nồng độ mùi cao hơn ở nhánh ngắn sẽ làm cho quyết định của kiến lệch về phía chúng Vì thế mùi sẽ bắt đầu tích lũy nhanh hơn trên nhánh ngắn, cuối cùng hầu hết các con kiến sẽ chọn nhánh này theo như sự tương tác giữa các con kiến được mô tả ở thí nghiệm trước Điều thú vị quan sát được là thậm chí khi một nhánh dài gấp đôi nhánh kia thì không phải tất cả các con kiến sử dụng nhánh ngắn hơn mà có một lượng nhỏ kiến chọn nhánh dài hơn Đây là cách để kiến có thể khám phá được những con đường mới

1.3 Một số thuật toán ACO áp dụng cho bài toán TSP

Bài toán Travelling Salesman Problem (TSP) là bài toán tối ưu tổ hợp kinh điển

và nổi tiếng Bài toán này đóng một vai trò quan trọng trong nghiên cứu các thuật toán

ACO TSP được chọn làm bài toán tối ưu tổ hợp điển hình và để áp dụng các thuật toán ACO bởi vì: nó là một bài toán NP-khó và thường nảy sinh nhiều trong các ứng dụng, dễ dàng áp dụng các thuật toán ACO ; nó cũng là một bài toán rất trực quan, dễ hiểu không như nhiều bài toán NP-khó khác; các bước thực thi của thuật toán ACO trên bài toán TSP là dễ hình dung, không có nhiều khó khăn về mặt kỹ thuật Phần này

ta sẽ giới thiệu chi tiết về các thuật toán AS, MMAS, ACS thông qua việc ứng dụng nó vào giải quyết bài toán TSP

Trang 14

1.3.1 Bài toán TSP

Nội dung bài toán như sau: Một người chào hàng xuất phát từ thành phố của anh

ta, anh ta muốn tìm một đường đi ngắn nhất đi qua tất cả các thành phố của khách hàng mỗi thành phố đúng một lần sau đó trở về thành phố ban đầu TSP được phát biểu vào thế kỷ 17 bởi hai nhà toán học vương quốc Anh là Sir William Rowan Hamilton và Thomas Penyngton Kirkman, và được ghi trong cuốn gsiáo trình Lý thuyết đồ thị nổi tiếng của Oxford Nó nhanh chóng trở thành bài toán khó thách thức toàn thế giới bởi độ phức tạp thuật toán tăng theo hàm số mũ (trong chuyên ngành thuật toán người ta còn gọi chúng là những bài toán NP-khó) Người ta bắt đầu thử và công bố các kết quả giải bài toán này trên máy tính từ năm 1954 (49 đỉnh), cho đến năm 2004 bài toán giải được với số đỉnh lên tới 24.978, và dự báo sẽ còn tiếp tục tăng cao nữa

Bài toán TSP có thể phát biểu dưới dạng đồ thị như sau: Cho G = (N, A,) là đồ thị

có hướng đầy đủ có trọng số, trong đó N là tập hợp của n = |N| nút (thành phố) , A = {(i,j)| (i,j) є VxV} là tập tất cả các cung của đồ thị Mỗi cung (i, j) được gán một trọng

số dij để biểu diễn khoảng cách giữa 2 thành phố i và j Bài toán TSP trở thành bài toán tìm chu trình Hamilton có độ dài ngắn nhất trên đồ thị G Ta cần phân biệt hai loại

TSP, symmetric TSP có khoảng cách giữa các thành phố không phụ thuộc vào hướng dij = dji với mọi thành phố i, j và asymmetric TSP – ATSP tồn tại ít nhất một cặp cạnh sao cho d ij ≠ dji Đối với đồ thị không đối xứng có (n-1)! đường đi chấp nhận được còn đối với đồ thị đối xứng có (n-1)!/2 đường đi có khả năng Khi n lớn ta không thể tìm

được lời giải tối ưu bằng các thuật toán vét cạn, hướng đi giải quyết bài toán là tìm các lời giải xấp xỉ tối ưu bằng các thuật toán heuristic, hoặc các thuật toán tiến hóa

Hình sau đây (hình 2.a và 2.b) đưa ra 2 ví dụ về bài toán TSP, được lấy từ TSPLIB website (xem [14])

Trang 15

Hình 2.a – Thể hiện các đỉnh trong thư viện TSP att532, tương ứng với 532 thành phố của Mỹ Hình 2.b – Thể hiện các đỉnh trong TSPLIB pcb1173 biểu diễn

Trang 16

1.3.2 Ant System (AS)

Thuật toán Ant System (AS) như đã giới thiệu là thuật toán đầu tiên trong lớp các thuật toán ACO được đề xuất bởi Dorigo trong luận án tiến sỹ của ông năm 1991(tham khảo [2], [3]) AS và cũng như nhiều thuật toán ACO cải tiến từ AS đều chọn TSP làm bài

toán thực nghiệm đầu tiên

Phương pháp giải TSP bằng AS

Đầu tiên là xây dựng đồ thị, n đỉnh biểu diễn cho n thành phố

Vệt mùi: mỗi cạnh được (i, j) được gắn một vệt mùi τ ij

Thông tin heuristic: η ij là nghịch đảo khoảng cách giữa hai thành phố (i, j)

Xây dựng lời giải:

Có m con kiến nhân tạo được đặt khởi tạo ngẫu nhiên tại các đỉnh, và tại mỗi bước lặp của thuật toán, mỗi con kiến sẽ xây dựng lời giải riêng của nó bằng cách

chọn một đỉnh mà chúng chưa thăm để đi

Ban đầu các vệt mùi được khởi tạo bởi giá trị τ 0, mỗi con kiến được đặt ngẫu nhiên tại một đỉnh xuất phát và lần lượt đi thăm các đỉnh còn lại để xây dựng đường đi

với theo quy tắc như sau (gọi là quy tắc random proportional), con kiến thứ k đang ở đỉnh i sẽ chọn đỉnh j tiếp theo với xác suất:

) ( )

k

t t

N

j 

Trang 17

Hai tham số α và β là hai tham số xác định sự ảnh hưởng của vệt mùi và thông tin heuristic : nếu α = 0 các thành phố gần nhất có nhiều khả năng được chọn, thuật toán trở nên giống với thuật toán heuristic thông thường, nếu β = 0 chỉ có thông tin về cường độ vệt mùi được sử dụng mà không hề có bất kỳ một thông tin heuristic nào

làm cho kết quả tìm kiếm được nghèo nàn và bài toán đễ rơi vào trường hợp cực tiểu địa phương

Ni k là các láng giềng có thể đi của con kiến k khi nó ở đỉnh i, đó là tập các đỉnh chưa được con kiến thứ k đi qua (xác suất chọn một đỉnh nằm ngoài N i

k

là 0) Với luật

xác suất này, thì xác suất để chọn một cạnh (i, j) tăng lên khi mà mùi τ ij và thông tin

heuristic ηij tương ứng của cạnh đó tăng

Mỗi con kiến có một bộ nhớ M k chứa danh sách các thành phố mà chúng đã đến

thăm theo thứ tự Nó được dùng để tính toán tập các láng giềng chưa thăm N i k trong

công thức xác suất (1.1) ở trên M k cũng cho phép các con kiến tính toán quãng đường

mà nó đã đi được và giúp kiến xác định được cạnh nó đi qua để cập nhật mùi

Chú ý rằng trong khi xây dựng lời giải, có hai cách cài đặt nó: song song và tuần

tự Với cách cài đặt song song, tại mỗi bước xây dựng lời giải tất cả các con kiến đều

di chuyển từ thành phố của chúng đến thành phố tiếp theo Trong khi đó với phương pháp cài đặt tuần tự thì sau khi một con kiến hoàn tất đường đi của nó, con kiến tiếp theo mới bắt đầu xây dựng đường đi của nó Đối với thuật toán AS thì cả hai cách cài đặt trên là tương đương, tức là chúng không gây ra ảnh hưởng quan trọng gì đến thuật toán Sau này ta sẽ thấy với thuật toán AS thì không như thế

Cập nhật mùi

Sau khi tất cả các con kiến xây dựng xong các lời giải của chúng, các vệt mùi sẽ

được cập nhật Đây là hình thực cập nhật offline sẽ nói đến sau Đầu tiên tất cả các

cạnh sẽ bị mất đi một lượng mùi (do bị bay hơi), sau đó những cạnh mà có các con kiến đi qua sẽ được tăng cường thêm một lượng mùi

Công thức thức bay hơi mùi:

Trang 18

tồi ở bước trước Nếu một cạnh không được chọn bởi bất kì con kiến nào thì cường độ mùi của nó sẽ bị giảm theo hàm mũ của số vòng lặp

Sau khi bay hơi mùi tất cả các con kiến sẽ tăng cường mùi cho những cạnh mà chúng đã đi qua theo công thức:

) ( )

( ) 1

(

1

t t

m k ij

k

 nếu (i,j) thuộc T k và ngược lại (1.4)

C k là độ dài của tuyến đường T k được xây dựng bởi con kiến k Với công thức (1.4),

tuyến đường của những con kiến nào mà càng tốt hơn thì nó càng được tăng cường thêm nhiều mùi Nói tóm lại thì những cạnh mà được nhiều con kiến lựa chọn thì sẽ nhận được nhiều mùi hơn và có nhiều khả năng hơn sẽ được lựa chọn bởi các con kiến trong các vòng lặp tiếp theo của thuật toán

Ưu điểm của AS:

Việc tìm kiếm ngẫu nhiên dựa vào trên các thông tin heuristic làm cho phép tìm kiếm linh hoạt và mềm dẻo trên không gian rộng hơn phương pháp heuristic sẵn có, do

đó cho ta lời giải tốt hơn và có thể tìm được lời giải tối ưu

Sự kết hợp với học tăng cường (reinforcement learning) trong đó những lời giải tốt

hơn sẽ được sự tăng cường hơn thông qua thông tin về cường độ vết mùi cho phép ta từng bước thu hẹp không gian tìm kiếm và vẫn không loại bỏ các lời giải tốt, do đó nâng cao chất lượng thuật toán

Nhược điểm của AS:

Hiệu suất của nó giảm đột ngộ so với nhiều thuật toán metaheuristic khác khi mà

kích thước của bài toán tăng lên Bởi vì khi số đỉnh của đồ thị lớn thì cường độ vệt mùi trên những cạnh không thuộc lời giải tốt (hoặc ít được con kiến lựa chọn) sẽ nhanh chóng giảm dần về 0, làm cho cơ hội khám phá hay tìm kiếm ngẫu nhiên của thuật toán sẽ giảm mà đây là một trong những điểm mạnh của các thuật toán mô phỏng tiến

hóa tự nhiên nên thuật toán hệ kiến AS kém hiệu quả

Trang 19

Vì thế, thực tế là các nghiên cứu về ACO ngày nay tập trung vào việc làm thế nào

để cải tiến AS

1.3.3 Max-Min Ant System (MMAS)

MMAS và một số thuật toán khác như Elitist AS, Rank-Based AS là các thuật

toán có được hiệu suất cao hơn nhiều so với thuật toán AS nhờ vào những thay đổi nhỏ trong thuật toán AS, đây được coi là các thuật toán kế thừa trực tiếp từ thuật toán AS

vì chúng về cơ bản là không khác gì nhiều so với AS

MMAS đưa ra bốn thay đổi chính đối với AS

Thứ nhất, nó chú trọng nhiều vào những tuyến đường tốt nhất được tìm thấy :

MMAS, chỉ cho phép con kiến tốt nhất hoặc là tại vòng lặp hiện tại iteration-best , hoặc tính từ thời điểm bắt đầu best-so-far được phép cập nhật mùi Tuy nhiên việc này

sẽ dẫn đến hiện tượng ứ đọng, tập trung (stagnation) quá nhiều khi mà tất cả các con

kiến đều cùng chọn một tuyến đường đi, do sự tăng lên quá thừa của cường độ các vết mùi trên các cạnh tốt

Để tránh hiện tượng trên một cải tiến thứ hai là MMAS giới hạn cường độ mùi trong một khoảng cố định [τ max , τmin] Tất cả vệt mùi trên các cạnh đều nằm trong khoảng này

Thứ ba, các vệt mùi được khởi tạo là cận trên của vệt mùi τ max , cùng với việc

một tỉ lệ bay hơi mùi nhỏ sẽ làm tăng khả năng khám phá cho các con kiến ngay từ khi bắt đầu

Cuối cùng, trong thuật toán MMAS các vệt mùi sẽ được khởi tạo lại nếu như hệ thống rơi vào trạng thái stagnation, hoặc không thể cải thiện được tuyến đường đã tạo

ra sau một số lượng các vòng lặp liên tiếp

Cập nhật mùi

Cũng như thuật toán AS, sau khi tất cả các con kiến xây dựng xong lời giải của

Trang 20

Sau đó cường độ mùi trên mỗi cạnh có con kiến tốt nhất đi qua được cập nhật một lượng theo công thức :

best ij ij

C

1

 , với C best hoặc là độ dài của tuyến đường tốt nhất tại vòng

lặp hiện tại, hoặc là độ dài của tuyến đường tốt nhất từ khi bắt đầu thuật toán

Khi ta sử dụng luật update best-so-far thì quá trình tìm kiếm sẽ tập trung nhanh chóng vào tuyến đường tốt nhất từ đầu đến hiện tại Còn khi sử dụng update iteration-best thì số lượng các cạnh được tăng cường mùi là nhiều hơn và sự tìm kiếm

cũng phân tán hơn

Các kết quả thực nghiệm cho thấy rằng, với những bài toán TSP nhỏ thì tốt nhất

là chỉ sử dụng update iteration-best Trong khi đó với những bài toán TSP lớn khoảng vài trăm đỉnh thì hiệu suất tốt nhất đạt được với việc sử dụng chú trọng đến update best-so-far

Giới hạn vết mùi

MMAS sử dụng hai cận trên (τ max) và cận dưới (τmin) để khống chế nồng độ mỗi

mùi trên mỗi cạnh với mục đích tránh cho thuật toán khỏi hiện tượng tắc nghẽn tìm

kiếm Cụ thể hơn, giới hạn của vệt mùi sẽ làm cho xác suất p ij của việc chọn thành

phố j khi kiến ở thành phố i bị giới hạn trong khoảng [p min, pmax]

Nhược điểm của thuật toán này là sẽ tập trung tìm kiếm vào các cạnh thuộc lời

giải tốt nhất tìm được, vì vậy hạn chế khả năng khám phá nếu τ min chọn bé Ngoài ra

khi chọn τ min bé thì gần như các thông tin heuristic được tận dụng triệt để, còn các cường độ mùi sẽ bị giảm nhanh và không có tác dụng mấy Còn nếu chọn τ min lớn thì

thuật toán sẽ gần với tìm kiếm ngẫu nhiên và ít phụ thuộc vào các thông tin heuristic

đồng thời khả năng học tăng cường cũng giảm theo

Trang 21

1.3.4 Ant Colony System (ACS)

Trong khi MMAS là thuật toán chỉ thay đổi phần nhỏ từ thuật toán AS, thì các thuật toán khác như ACS, Ant-Q , đạt được hiệu suất cao bằng cách đưa hẳn các kỹ thuật hoàn toàn mới mà ý tưởng của nó không có trong thuật toán AS cơ bản Đây là những thuật toán mở rộng của AS

Thuật toán ACS khác với AS ở ba điểm chính

Thứ nhất, nó lợi dụng kinh nghiệm tích lũy được từ những con kiến hơn nhiều so

với thuật toán AS thông qua việc dùng một luật lựa chọn đỉnh linh hoạt hơn

Thứ hai, sự tăng cường mùi và bay hơi mùi chỉ áp dụng trên những cạnh thuộc tuyến đường đi tốt nhất từ trước tới hiện tại

Thứ ba, mỗi khi một con kiến sử dụng một cạnh (i, j) để di chuyển từ thành phố i sang j, nó sẽ lấy đi một ít mùi từ cạnh đó để tăng khả năng khám phá đường đi Sau

đây là chi tiết của các cải tiến

Xây dựng lời giải

Trong ACS giả sử con kiến k đang ở đỉnh i, nó sẽ chọn đỉnh j tiếp theo nhờ quy tắc sau (pseudorandom proportional ) với công thức:

q q if

các thông tin heuristic và sự tích lũy mùi, trong khi với xác suất 1-q 0 các con kiến sẽ

thiên về hướng khám phá bằng công thức phân phối xác suất Sự điều chỉnh tham số q 0

cho phép điều chỉnh mức độ khám phá và lựa chọn hoặc tập trung tìm kiếm xung

Ngày đăng: 17/02/2014, 23:11

HÌNH ẢNH LIÊN QUAN

BẢNG TỪ VIẾT TẮT - phương pháp tối ưu hoá đàn kiến
BẢNG TỪ VIẾT TẮT (Trang 4)
BẢNG TỪ VIẾT TẮT - phương pháp tối ưu hoá đàn kiến
BẢNG TỪ VIẾT TẮT (Trang 4)
1.2. Quá trình phát triển - phương pháp tối ưu hoá đàn kiến
1.2. Quá trình phát triển (Trang 10)
Hình 1. a– cầu đơi với 2 nhánh bằng nhau, b– cầu đôi với tỉ số các nhánh là 2 - phương pháp tối ưu hoá đàn kiến
Hình 1. a– cầu đơi với 2 nhánh bằng nhau, b– cầu đôi với tỉ số các nhánh là 2 (Trang 11)
Trong thí nghiệm đầu tiên hai nhánh cầu có chiều dài bằng nhau (xem hình 1a ). Khi bắt đầu các con kiến di chuyển tự dâo giữa tổ và nguồn thức ăn, người ta quan sát  tỉ lệ phần trăm các con kiến chọn các nhánh trong 2 nhánh qua thời gian - phương pháp tối ưu hoá đàn kiến
rong thí nghiệm đầu tiên hai nhánh cầu có chiều dài bằng nhau (xem hình 1a ). Khi bắt đầu các con kiến di chuyển tự dâo giữa tổ và nguồn thức ăn, người ta quan sát tỉ lệ phần trăm các con kiến chọn các nhánh trong 2 nhánh qua thời gian (Trang 12)
Hình 2.a – Thể hiện các đỉnh trong thư viện TSP att532, tương ứng với 532 - phương pháp tối ưu hoá đàn kiến
Hình 2.a – Thể hiện các đỉnh trong thư viện TSP att532, tương ứng với 532 (Trang 15)
thành phố của Mỹ. Hình 2.b – Thể hiện các đỉnh trong TSPLIB pcb1173 biểu diễn - phương pháp tối ưu hoá đàn kiến
th ành phố của Mỹ. Hình 2.b – Thể hiện các đỉnh trong TSPLIB pcb1173 biểu diễn (Trang 15)
Khi đưa thêm kĩ thuật shaking vào (xem các hình 2b, 2c, 2d) thì ta vẫn có cùng - phương pháp tối ưu hoá đàn kiến
hi đưa thêm kĩ thuật shaking vào (xem các hình 2b, 2c, 2d) thì ta vẫn có cùng (Trang 38)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w