www.facebook.com/hocthemtoan
ĐỀ SỐ 15. ÔN THI TỐT NGHIỆP THPT MÔN TOÁN Thời gian làm bài 150 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7,0 điểm ) Câu I ( 3,0 điểm ) Cho hàm số 4 2 2 3y x x= − + + 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho. 2) Biện luận theo m số nghiệm thực của phương trình 4 2 2 2 0x x m− − + = . Câu II ( 3,0 điểm ) 1) Giải phương trình 2 1 3.13 68.13 5 0 x x+ − + = . 2) Tính tích phân 3 0 I= sin3xdx π ∫ . 3) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số ( ) 2 . x f x x e = trên đoạn [-3;-1] Câu III ( 1,0 điểm ) Cho hình chóp SABC có SA ⊥ mp(ABC). Đáy ABC là tam vuông tại A, AB = a, AC = a 3 và SC = a 5 . Tính thể tích khối chóp S.ABC theo a. II. PHẦN RIÊNG ( 3,0 điểm ) Thí sinh học theo chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó. 1. Theo chương trình Chuẩn: Câu IV.a ( 2,0 điểm ) Trong không gian với hệ toạ độ Oxyz, cho điểm A( 6;-1 ;0) và mặt phẳng (P) có phương trình: 4 3 1 0x y z− + + = 1. Viết phương trình tham số đường thẳng d đi qua A và vuông góc với mp(P). 2. Viết phương trình mặt cầu có tâm là hình chiếu H vuông góc của điểm A lên mp(P) và đi qua điểm A. Câu V.a ( 1,0 điểm ) Giải phương trình 2 3 46 0z z− + = trên tập số phức. 2. Theo chương trình Nâng cao: Câu IV.b ( 2,0 điểm ) Trong không gian với hệ toạ độ Oxyz, cho điểm A( 3; 0 ;1), hai đường thẳng d 1 và d 2 có phưong trình là: d 1 2 6 3 x t y t z t = = + = + , d’ 1 2 3 1 1 1 x y z− + − = = − . 1. Tìm toạ độ hình chiếu vuông góc của điểm A trên d 1 . 2. Xét vị trí tương đối của d và d’. Câu V.b ( 1,0 điểm ) Tìm căn bậc hai của số phức - 24 10z i= + . Hết Câu Đáp án Điểm Câu I 3 điểm 1. (2 điểm) Tập xác định: D = R. Sự biến thiên: Chiều biến thiên: Ta có: ( ) 3 2 ' 4 4 4 1 ; ' 0 0, 1y x x x x y x x= − + = − − = ⇔ = = ± Trên các khoảng ( ) ; 1−∞ − và ( 0; 1), y’>0 nên hàm số đồng biến. Trên các khoảng (-1;0) và ( ) 1;+∞ , y’ < 0 nên hàm số nghịch biến. 0,5 đ Cực trị: Hàm số đạt cực đại tại 1x = ± , y CĐ = 4. Hàm số đạt cực tiểu tại x = 0, y CT = 3. Giới hạn: 4 2 4 2 3 lim lim 4 x x y x x x →−∞ →−∞ = − + + = +∞ ÷ 4 2 4 2 3 lim lim 4 x x y x x x →+∞ →+∞ = − + + = +∞ ÷ 0,5 đ Bảng biến thiên: 0,5 đ Đồ thị: Đồ thị cắt trục tung tại điểm (0; 3). Đồ thị cắt trục hoành tại hai điểm ( ) 3;0− và ( ) 3;0 . Đồ thị nhận trục tung làm trục đối xứng. 0,5 đ 2. (1 điểm) Phương trình: ( ) 4 2 4 2 2 2 0 2 3 1 *x x m x x m− − + = ⇔ − + + = + Số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số 4 2 2 3y x x= − + + và đường thẳng y = m+1. 0,5 đ Dựa vào đồ thị ta có kết quả biện luận số nghiệm của phương trình (*): m+1 m số nghiệm của phương trình (*) m+1>4 m>4 0 m+1=4 m=4 2 3<m+1<4 2<m<3 4 m+1=3 m=2 3 m+1<3 m<2 2 0,5 đ Câu II 3 điểm 1. (1 điểm) Phương trình 2 39.13 68.13 5 0 x x ⇔ − + = , Đặt 13 x t = điều kiện t > 0 Ta có phương trình 2 1 5 39 68 6 0 13 3 t t t t− + = ⇔ = ∨ = ( thoả điều kiện) 0,5 đ Nếu 1 13 t = thì 1 1 13 13 13 1 13 x x x − = ⇔ = ⇔ = − Nếu 5 3 t = thì 13 5 5 13 log 3 3 x x= ⇔ = Vậy phương trình đã cho có hai nghiệm 13 5 1, log 3 x x= − = 0,5 đ 2. (1 điểm) 3 3 0 0 1 I= sin3 cos3 3 xdx x π π = − ∫ 0,5 đ ( ) 1 2 I cos - cos0 3 3 π = − = 0,5 đ 3. (1 điểm) Xét trên đoạn [-3;-1] hàm số đã cho có đạo hàm: ( ) ( ) 2 2 ' 2 2 x x x f x xe x e e x x = + = + ( ) ( ) 2 ' 0 2 0 0, 2 x f x e x x x x= ⇔ + = ⇔ = = − Ta có [ ] [ ] 2 3; 1 ,0 3; 1− ∈ − − ∉ − − 0,5 đ ( ) ( ) ( ) 3 2 9 4 1 3 , 2 , 1f f f e e e − = − = − = Vậy [ ] ( ) [ ] ( ) 2 3; 1 3; 1 1 4 min , af x M x f x e e − − − − = = 0,5 đ Câu III 1 điểm Ta có SA ⊥ mp(ABC) nên chiều cao của khối chóp S.ABC là SA. Tam giác SAC vuông tại A nên SA 2 = SD 2 - AD 2 Hay SA 2 = 5a 2 - 3a 2 = 2a 2 SA 2a⇒ = . 0,5 đ Đáy ABC là tam giác vuông tại A nên 2 ABC 1 1 3 S AC.AB . 3 2 2 2 a a a = = = Thể tích khối chóp S.ABC là: 2 3 S.ABC ABC 1 1 3 6 V .SA.S . 2. 3 3 2 6 a a a = = = (đvtt). 0,5 đ Câu IV.a ( 2,0 điểm ) 1. (1 điểm) (P) có vectơ pháp tuyến ( ) 4; 1;3n = − ur . Do d vuông góc với (P) nên d nhận ( ) 4; 1;3n = − ur làm vectơ chỉ phương. 0,5 đ Đường thẳng d đi qua điểm A(6;-1;0) và có vectơ chỉ phương ( ) 4; 1;3n = − ur Vậy phương trình tham số của d là 6 4 1 3 x t y t z t = + = − − = 0,5 đ 2. (1 điểm) H là giao điểm của d và mặt phẳng (P). Toạ độ H là nghiệm của hệ: ( ) ( ) 6 4 1 4 6 4 1 3 24 24 1 4 3 1 0 x t y t t t z t t t x y z = + = − − ⇒ + − − − = ⇔ = − ⇔ = − − + + = Vậy H( 2; 0;-3) 0,5 đ Do mặt cầu đi qua A nên có bán kính: R=AH = ( ) ( ) ( ) 2 2 2 2 6 2 1 3 0 26− + − + − + = Vậy phương trình mặt cầu (S): ( ) ( ) 2 2 2 2 3 26x y z− + + + = 0,5 đ Câu V.a ( 1,0 điểm ) Ta có ( ) 2 3 4.1.46 175∆ = − − = − Vậy phương trình có hai nghiệm phức là: 1 3 175 3 5 7 2 2 i i z − − = = , 2 3 175 3 5 7 2 2 i i z + + = = 1 đ Câu IV.b 1. (1 điểm) a 5 a 3 a A C B S Gọi (P) là mặt phẳng đi qua điểm A và vuông góc với d. Đường thẳng d có vectơ chỉ phương là: ( ) 1;2;3u = ur Do (P) vuông góc với d nên (P) có vectơ pháp tuyến là ( ) 1;2;3u = ur Phương trình của (P) là: ( ) ( ) 1 3 2 3 1 0 2 3 6 0x y z x y z− + + − = ⇔ + + − = 0,5 đ Gọi H là hình chiếu của A lên d. Suy ra H là giao điểm của (P) và d. Nên toạ độ của H là nghiệm của hệ: ( ) ( ) 1 2 6 3 2 3 6 0 2 1 2 3 6 3 6 0 14 14 1 x t y t z t x y z t t t t t = = + = + + + − = ⇒ + + + + − = ⇔ = − ⇔ = − Vậy H(-1;-1;3) 0,5 đ 2. (1 điểm) Ta có : Đường thẳng d đi qua điểm M(0;1;6) và có vectơ chỉ phương ( ) 1;2;3u = ur Đường thẳngd’đi qua điểm M’(1;-2;3) và có vectơ chỉ phương ( ) ' 1;1; 1u = − ur ( ) MM' 1; 3; 3= − − uuuur 0,5 đ Ta có: ( ) , ' 5;4; 1 , , ' .MM' 14 0u u u u = − − = − ≠ ur ur ur ur uuuuur Vậy d và d’ chéo nhau. 0,5 đ Câu V.b ( 1,0 điểm ) Số phức ( ) , , Rx yi x y+ ∈ sao cho ( ) 2 24 10x yi i+ = − + ( ) ( ) 2 2 24 1 2 10 2 x y xy − = − ⇔ = Từ (2) suy ra 5 y x = thay vào (1) ta có 2 4 2 2 25 24 24 25 0x x x x − = − ⇔ + − = 2 2 1, 25x x⇔ = = − (loại) 0,5 đ Hệ có hai nghiệm; 1 1 5 5 x x y y = = − ∨ = = − Vậy có hai căn bậc hai của -24+10i là 1+5i và -1-5i 0,5 đ Hết ĐỀ SỐ 16. ÔN THI TỐT NGHIỆP THPT MÔN TOÁN Thời gian làm bài 150 phút I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH(7,0 điểm) Câu I (3,0 điểm) Cho hàm số 4 2 y x 2x 1 = − − có đồ thị (C). a) Khảo sát sự biến thiên và vẽ đồ thị (C). b) Biện luận theo m số nghiệm của phương trình 4 2 x 2x m 0 − − = . Câu II (3,0 điểm) a) Giải phương trình 1 7 2.7 9 0 x x − + − = . b) Tính tích phân = + ∫ 1 x I x(x e )dx 0 . c) Tìm giá trị lớn nhất và nhỏ nhất (nếu có) của hàm số = − y lnx x . Câu III (1,0 điểm) Cho tứ diện SABC có ba cạnh SA, SB, SC vuông góc với nhau từng đôi một với SA = 1cm, SB = SC = 2cm. Xác định tâm và tính bán kính của mặt cấu ngoại tiếp tứ diện, tính diện tích của mặt cầu và thể tích của khối cầu đó . II. PHẦN RIÊNG(3,0 điểm) 1. Theo chương trình Chuẩn: Câu IV.a (2,0 điểm) Trong không gian với hệ trục tọa độ Oxyz cho bốn điểm A(- 2; 1; - 1), B(0; 2; - 1), C(0; 3; 0), D(1; 0; 1). a) Viết phương trình đường thẳng BC. b) Chứng minh ABCD là một tứ diện và tính chiều cao AH của tứ diện. c) Viết phương trình mặt cầu tâm I(5; 1; 0) và tiếp xúc với mặt phẳng (BCD). Câu V.a (1,0 điểm) Thực hiện phép tính 3 3 [(2 3 ) (1 2 )](1- i) -1+ i i i − − − 2. Theo chương trình Nâng cao: Câu IV.b (2,0 điểm) Trong không gian với hệ trục tọa độ Oxyz cho điểm M(1; - 1; 1), hai đường thẳng − ∆ = = − x 1 y z ( ): 1 1 1 4 , = − ∆ = + = x 2 t ( ): y 4 2t 2 z 1 và mặt phẳng + = (P):y 2z 0 . a) Tìm tọa độ hình chiếu vuông góc của điểm M trên ( 2 ∆ ). b) Viết phương trình đường thẳng cắt cả hai đường thẳng ∆ ∆ ( ),( ) 1 2 và nằm trong mặt phẳng (P). Câu V.b (1,0 điểm) Tìm m để đồ thị hàm số − + = − 2 x x m (C ):y m x 1 với 0m ≠ cắt trục hoành tại hai điểm phân biệt A, B sao cho tiếp tuyến với đồ thị tại hai điểm A, B vuông góc với nhau. ĐÁP ÁN CÂU NỘI DUNG ĐIỂM I a). ( 2,0 điểm ) * TXĐ: D= ¡ * Sự biến thiên: ∙ Chiều biến thiên: ( ) 3 2 ' 4 4 4 1y x x x x= − = − 0 ' 0 1 x y x = = ⇔ = ± Hàm số đồng biến trên các khoảng (- 1; 0) và (1; +∞ ) Hàm số nghịch biến trên các khoảng (- ∞ ; - 1) và (0;1) ∙ Cực trị: Hàm số đạt cực đại tại x = 0 và y CĐ = y(0) = - 1 Hàm số đạt cực tiểu tại x = ± 1 và y CT = y( ± 1 ) = - 2 ∙ Giới hạn: lim , lim x x y y →+∞ →−∞ = +∞ = +∞ ∙ Bảng biến thiên: x −∞ 1− 0 1 +∞ y’ − 0 + 0 − 0 + y +∞ 1− +∞ 2− 2− * Đồ thị: ∙ Điểm uốn: Ta có 2 '' 12 4y x= − ; 3 '' 0 3 y x= ⇔ = ± Do đó đồ thị có hai điểm uốn 3 14 3 14 ; , ; 1 2 3 9 3 9 U U ÷ ÷ ÷ ÷ − − − ∙ Đồ thị giao với trục tung tại điểm (0; - 1), giao với trục hoành tại hai điểm ( ) ( ) 1 2;0 ; 1 2;0+ − + ∙ Đồ thị nhận trục Oy làm trục đối xứng. . 0,25 0,25 0,25 0,25 0,25 0,25 0,5 Pt (1) ⇔ − − = − 4 2 x 2x 1 m 1 (2) Phương trình (2) chính là phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng (d): y = m – 1 (cùng phương với trục hoành) Dựa vào đồ thị (C), ta có: m -1 < -2 ⇔ m < -1 : (1) vô nghiệm m -1 = -2 m = -1 m - 1 > -1 m >0 ⇔ ⇔ : (1) có 2 nghiệm -2 < m-1<-1 ⇔ -1 < m < 0 : (1) có 4 nghiệm m-1 = - 1 ⇔ m = 0 : (1) có 3 nghiệm 0,25 0,75 II 1 7 2.7 9 0 x x− + − = 2 7 7 7 2. 9 0 7 7 9.7 14 0 1 7 7 log 2 7 2 x x x x x x x x ⇔ + − = ⇔ − + = = = ⇔ ⇔ = = 0,25 0,25 0,5 = + = + = + ∫ ∫ ∫ 1 1 1 x 2 x 1 2 0 0 0 I x(x e )dx x dx xe dx I I = = ∫ 1 2 1 0 1 I x dx 3 = = ∫ 1 x 2 0 I xe dx 1 (Đặt : = = x u x,dv e dx ). Do đó: 4 I 3 = 0,25 0,25 0,5 Ta có : TXĐ D (0; )= +∞ 1 1 1 1 1 1 1 1 y ( ), y 0 ( ) 0 x 4 x 2 2 2 x x x x x ′ ′ = − = − = ⇔ − = ⇔ = Bảng biến thiên : x 0 4 +∞ y ′ + 0 - y 2ln2 - 2 Vậy : Maxy y(4) 2ln2 2 (0; ) = = − +∞ và hàm số không có giá trị nhỏ nhất. 0,25 0,25 0,25 0,25 III Gọi I là trung điểm của AB . Qua I dựng đường thẳng ∆ ⊥ (SAB) . Gọi J là trung điểm của SC. Trong mp(SAC) dựng trung trực của SC cắt ∆ tại O. Khi đó O là tâm của mặt cầu ngoại tiếp tứ diện SABC. Tính được SI = 1 5 AB 2 2 = cm, OI = JS = 1cm, bán kính r = OS = 3 2 cm Diện tích : S = 2 2 4 R 9 (cm )π = π Thể tích : V = 4 9 3 3 R (cm ) 3 2 π = π 0,25 0,25 0,25 0,25 IVa a) + = uuur Qua C(0;3;0) + VTCP BC (0;1;1) = ⇒ = + = x 0 (BC): y 3 t z t b) = = − uuur uuur BC (0;1;1),BD (1; 2;2) ⇒ = − uuur uuur [BC,BD] (4;1; 1) là véctơ pháp tuyến của mp(BCD). Suy ra pt của mp(BCD): 4x+(y-2)-(z+1)=0 hay 4x + y – z – 3 = 0. Thay tọa độ điểm A vào pt của mp(BCD), ta có: 4(-2) + 1 – (-1) - 3 ≠ 0. Suy ra ( )A BCD∉ . Vậy ABCD là một tứ diện. Tính chiều cao 3 2 ( ,( )) 2 AH d A BCD= = c) Tính được bán kính của mặt cầu ( ,( )) 18r d I BCD= = Suy ra phương trình mặt cầu 2 2 2 ( 5) ( 1) 18x y z− + − + = 0,25 0,25 0.25 0,25 0,25 0,25 0,25 0,25 V.a = 1 3i+ 1,0 IV.b a) Gọi mặt phẳng − ⊥ ∆ Qua M(1; 1;1) (P): ( ) 2 ∆ + − ⇒ ⇒ − − = = − r r P 2 Qua M(1; 1;1) (P): (P): x 2y 3 0 + VTPT n = a ( 1;2;0) Khi đó : 19 2 N ( ) (P) N( ; ;1) 2 5 5 = ∆ ∩ ⇒ b) Gọi A ( ) (P) A(1;0;0) , B ( ) (P) B(5; 2;1) 1 2 = ∆ ∩ ⇒ = ∆ ∩ ⇒ − Vậy x 1 y z (m) (AB): 4 2 1 − ≡ = = − 0,25 0,5 0,25 0,5 0,5 V.b Phương trình hoành độ giao điểm của (C ) m và trục hoành : − + = 2 x x m 0 (*) với x 1≠ Điều kiện 1 m , m 0 4 < ≠ Từ (*) suy ra = − 2 m x x . Hệ số góc của tiếp tuyến − + − − ′ = = = − − 2 2 x 2x 1 m 2x 1 k y (x 1) x 1 Gọi A B x ,x là hoành độ A, B, ta có + = = A B A B x x 1 , x .x m Hai tiếp uyến vuông góc với nhau thì ′ ′ = − ⇔ − + + = ⇔ − = A B A B A B y (x ).y (x ) 1 5x x 3(x x ) 2 0 5m 1 0 1 m 5 ⇔ = (thỏa mãn điều kiện) Vậy giá trị cần tìm 1 m 5 = . 0,25 0,25 0,25 0,25 . ĐỀ SỐ 15. ÔN THI TỐT NGHIỆP THPT MÔN TOÁN Thời gian làm bài 150 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7,0. cao: Câu IV.b ( 2,0 điểm ) Trong không gian với hệ toạ độ Oxyz, cho điểm A( 3; 0 ;1), hai đường thẳng d 1 và d 2 có phưong trình là: d 1 2 6 3 x t y