Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 25 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
25
Dung lượng
1,66 MB
Nội dung
Tínhtoánvậnchuyểntrầmtíchvàbiếnđộng
đáy biểntạivùnglâncậncôngtrìnhdướitác
động củasóngvàdòngchảy
Dương Công Điển
Trường Đại học Khoa học Tự nhiên
Luận văn ThS chuyên ngành: Hải dương học; Mã số: 60 44 97
Người hướng dẫn: PGS. TS Nguyễn Minh Huấn
Năm bảo vệ: 2012
Abstract: Nghiên cứu phân tích các quá trìnhđộng lực (sóng vàdòng chảy) tácđộng đến
quá trìnhvậnchuyểntrầmtích trong khu vực cửa Thuận An. Nghiên cứu ứng dụng mô
hình SMS (các mô đun CMS-flow và CMS-wave) trong việc tínhtoánvậnchuyểntrầm
tích khu vực cửa Thuận An dướitácđộngcủacông trình. Các thông số củacôngtrình
cũng được đưa vào mô hình tính nhằm mục đích mô phỏng được các tácđộngcủa nó tới
sự vậnchuyểntrầmtíchvàbiếnđộngđáy biển.
Keywords: Hải dương học; Biếnđộng đáy; Trầmtích
Content
MỞ ĐẦU
Sự biếnđộng bãi biển trong vùng nước nông ven bờ là kết qủa tácđộngcủa các quá trình
tự nhiên như gió, sóng, dòng chảy, sóng thần vàbiếnđộngcủa mực nước biển. Tuy nhiên sự tác
động của con người cũng có ảnh hưởng đáng kể thông qua các côngtrình nhân tạo như xây dựng
kè, đê chắn sóng, tường đứng ven biểnvà các quá trình nạo vét luồng cũng như nuôi bãi. Do vậy
nghiên cứu sự biếnđộng bãi biển trong vùng ven bờ là hết sức cần thiết và quan trọng đối với
các côngtrình ven bờ như: xây dựng cảng, thiết kế luồng tầu và các côngtrình bảo vệ bờ.
Trong nghiên cứu này, tôi tiến hành các phân tích số liệu thủy động lực học có tácđộng
tới các quá trìnhvậnchuyểntrầmtíchvàbiến đổi đáy trong vùng nước nông ven bờ. Áp dụng
mô hình số (CMS) tínhtoán mô phỏng sự biếnđộng bãi biểntạivùngcửa Thuận An sau khi xây
dựng côngtrình kè biển. Trong quá trìnhtínhtoán kiểm chứng mô hình, Các tham số sóngvà
dòng chảy được hiệu chỉnh và kiểm chứng kỹ lưỡng. Ngoài ra bộ số liệu đo đạc biếnđộng đường
bờ trong khuôn khổ dự án VS\RDE-03 được sử kiểm chứng với các kết quả biếnđộng bãi biển
của mô hình.
Các kết quả mô phỏng chỉ ra rằng, bước đầu các côngtrình xây dựng kè biển với mục
đích bảo vệ, ngăn chặn xói lở bờ biển ở khu vực Hải Dương – Thuận An – Hòa Duân đã có
những kết quả nhất định. Khu vực bờ biển Hải Dương đã được bảo vệ khỏi các tácđộng gây xói
lở, khu vực phía nam cửa Thuận An chuyển từ trạng thái xói lở sang bồi tụ. Các kết quả tínhtoán
đưa ra được bức tranh khá phù hợp với các kết quả đo đạc thực tế.
Để hoàn thành bài luận văn này tôi xin bày tỏ lòng kính trọng và biết ơn sâu sắc tới: Ban
giám hiệu trường Đại học Khoa học tự nhiên, Khoa Khí tượng - Thủy vănvà Hải dương học,
phòng sau đại học đã tạo điều kiện giúp đỡ tôi hoàn thành luận văn này.
Viện Cơ học, Viện KH và CN Việt Nam (địa chỉ; 18 Hoàng Quốc Việt, Nghĩa Đô Cầu
Giấy, Hà Nội), cơ quan nơi tôi côngtác đã cử đi đào tạo cũng như tạo điều kiện về mặt thời gian,
kinh phí và các thủ tục hành chính trong suốt quá trình học tập.
Ban giám đốc, các đồng nghiệp của Trung tâm Khảo sát Nghiên cứu Tư vấn Môi trường
Biển và dự án hợp tác Việt Nam – Thụy Điển VS\RDE-03 góp ý, cung cấp số liệu, tạo điều kiện
đi khảo sát đo đạc tại khu vực cửabiển Thuận An.
PGS. TS Nguyễn Minh Huấn - người trực tiếp hướng dẫn, giúp đỡ và tạo mọi điều kiện
trong quá trình nghiên cứu và hoàn thành bản luận văn này.
Tôi xin chân thành cảm ơn các thầy cô trong Khoa Khí tượng – Thủy vănvà Hải dương
Học đã tận tínhdạy dỗ và truyền thụ kiến thức cho tôi trong những năm học vừa qua
Chương 1 - TỔNG QUAN
1.1 Đặt vấn đề
Trong những năm gần đâydưới sự phát triển mạnh của nền kinh tế cũng như sự phát triển
nhanh của ngành du lịch và dịch vụ, nhiều các côngtrình ven bờ như đê biển, kè chắn sóng, mỏ
hàn được xây dựng với mục đích chỉnh trị nhằm đạt được mục tiêu phục vụ phát triển kinh tế,
bảo vệ các vùng dân cư khỏi sự xâm thực từ phía biển.
Khu vực cửabiển Thuận An – Thừa Thiên Huế là một trong những cửa ngõ quan trọng
của giao thông đường thủy kết nối hầu hết các con sôngcủatỉnh Thừa Thiên Huế và trong khu
vực đầm phá Tam Giang – Cầu Hai trong đó có cảng Thuận An với Biển Đông. Đây cũng là cửa
chính tiêu thoát lũ trong mùa mưa và là kênh trao đổi nước giữa đầm phá và biển. Thêm vào đó
phía bắc cửa là khu dân cư thuộc xã Hải Dương với số lượng dân cư lớn và phía nam cửa là khu
du lịch bãi tắm biển Thuận An. Đây là hai khu vực đang có hiện tượng xói lở mạnh gây ra tình
trạng nguy hiểm tới đời sống dân cư cũng như phát triển du lịch trong khu vực [3].
Với chủ trương ngăn chặn sự bồi lấp luồng tàu tại Thuận An và bảo vệ bờ hai phía bắc và
phía nam, đầu năm 2005 Ủy ban nhân dân Tỉnh Thừa Thiên Huế đã ra quyết định phê duyệt dự
án xây dựng “xử lý khẩn cấp khắc phục xói lở bờ biển Hải Dương và chỉnh trị luồng cảng Thuận
An, tỉnh Thừa Thiên Huế”. Giai đoạn 1 xây dựng côngtrình chống xói lở bờ biển Hải Dương –
Thuận An – Hòa Duân. Côngtrình đã được xây dựng vào đầu năm 2008 và hoàn thành vào cuối
năm 2010.
Với mục tiêu bảo vệ các vùng bị xói lở, côngtrình bước đầu đã có một số hiệu quả nhất
định. Khu vực phía bắc (khu bờ biển xã Hải Dương) có các kè S1, S2 và B bảo vệ cách ly khu vực
bờ khỏi các tácđộngcủasóngvàdòngchảy nên quá trình xói lở bờ biểntạiđây không còn diễn ra.
Khu vực phía nam gần cửa (khu bờ biển Thuận An – Hòa Duân) hiện tượng xói lở không còn (đặc
biệt là bãi biển phía nam kè) và thay vào đó là quá trình bồi diễn ra mạnh mẽ dưới sự che chắn của
các công trình. Khu vực phía trong cửa Thuận An, quá trình bồi xói vàbiếnđộng bãi biểnvà
đường bờ diễn ra phức tạp. Khu vực phía nam xa côngtrình quá trình bồi và xói diễn ra theo mùa
dưới tácđộngcủa các hướng sóng khác nhau trong gió mùa Đông Bắc và gió mùa Tây Nam.
Như vậy kết quả sau khi xây dựng các kè biển trong giai đoạn 1 của dự án đã có các tácđộng
đến các quá trình thủy động lực và kết quả là tácđộng đến sự tiến triển của đường bờ và bãi biển
khu vực cửa Thuận An vàvùnglậncận như sau:
- Quá trìnhsóngvàdòngchảy khu vực gần côngtrìnhvàcửa Thuận An có sự thay đổi.
- Các côngtrình cách ly hoặc ngăn cảndòngvậnchuyểntrầmtích dọc bờ, làm thay đổi bức
tranh vậnchuyểntrầm tích.
- Với mục tiêu bước đầu là ngăn cản sự xói lở tại các bờ biển Hải Dương – Thuận An – Hòa
Duân, Các côngtrình kè đã phát huy được tính hiệu quả tại các vùng bờ biểnlậncậncông
trình, tuy nhiên chưa giải quyết được sự bồi lấp luồng tàu và xói lở tại các khu vực bờ phía
trong cửa.
1.2 Mục tiêu nghiên cứu:
Để hiểu rõ quy luật các quá trìnhvậnchuyểntrầmtíchvàbiếnđộngđáy biển, cần có sự
nghiên cứu chi tiết về các quá trìnhđộng lực gây ra quá trìnhvậnchuyểntrầmtích trong khu vực
cửa Thuận An, đặc biệt là các tácđộngcủacông trình. Có các nghiên cứu định lượng mô phỏng,
đưa ra bức tranh vậnchuyểntrầmtíchvàbiến đổi đáy biển, từ đó có các giải pháp khắc phục các
yếu điểm trong giai đoạn 1 củacôngtrình cũng như đưa ra hướng giải quyết trong giai đoạn tiếp
theo. Các mục tiêu chính của nghiên cứu gồm có:
- Nghiên cứu phân tích các quá trìnhđộng lực (sóng vàdòng chảy) tácđộng đến quá trình
vận chuyểntrầmtích trong khu vực cửa Thuận An.
- Nghiên cứu ứng dụng mô hình SMS (các mô đun CMS-flow và CMS-wave) trong việc
tính toánvậnchuyểntrầmtích khu vực cửa Thuận An dướitácđộngcủacông trình.
1.3 Giới hạn của nghiên cứu
Trong nghiên cứu này, tác giả tập trung nghiên cứu vậnchuyểntrầmtíchtại khu vực của
Thuận An, đặc biệt là khu vực lậncậncông trình, dướitácđộng chủ yếu của hai yếu tố sóngvà
dòng chảy. Các thông số củacôngtrình cũng được đưa vào mô hình tính nhằm mục đích mô
phỏng được các tácđộngcủa nó tới sự vậnchuyểntrầmtíchvàbiếnđộngđáy biển.
Do việc sử dụng mô hình hai chiều trung bình theo độ sâu để mô phỏng các quá trình
thủy động lực vàbiến đổi đáy, cho nên các kết quả chỉ mô phỏng được quá trìnhbiến đổi đáy
biển, sự biến đổi đường bờ không được mô phỏng ở đây. Tuy nhiên các kết quả đo đạc biếnđộng
đường bờ vẫn được sử dụng để so sánh sự tương quan giữa kết quả tínhbiếnđộngđáybiển với
sự biếnđộngcủa đường bờ.
Các kịch bản tínhtoán sử dụng các kết quả phân tíchsóng theo các hướng tácđộng khác
nhau, mỗi hướng tácđộng tiến hành lấy trung bình các tham số sóng theo một khoảng thời gian.
Dao động mực nước áp dụng tạibiên được lấy bằng sự biếnđộng mực nước trong một chu kỳ
triều đặc trưng. Lưu lượng trong các sông không được sử dụng trong các nghiên cứu tính toán.
1.4 Phương pháp nghiên cứu
Dựa trên các đặc điểm khu vực nghiên cứu vùng đầm phá Tam Giang – Cầu Hai vàvùngcửa
sông lạch triều Thuận An, cho nên phương pháp nghiên cứu được hình thành trên cơ sở:
- Nghiên cứu các tài liệu liên quan tới vùng đầm phá, cửasôngvàcông trình. Dựa vào các
thông tin phù hợp với vùng nghiên cứu. Dựa trên thông tin, số liệu và các kết quả của các
nghiên cứu, côngtrình khoa học và các đề tài, dự án đã tiến hành tại khu vực. Xem xét
phân tích các số liệu, văn bản có liên quan.
- Thu thập các số liệu cơ bản về địa hình, đường bờ, thông số củacông trình, các số liệu về
mực nước, chế độ sóngvàtính chất trầm tích.
- Phân tích số liệu làm cơ sở thiết lập mô hình và xây dựng các kịch bản tính toán.
- Xác định mô hình phù hợp với nguồn số liệu và khu vực nghiên cứu.
- Thiết lập mô hình dựa trên các số liệu cơ bản, lựa chọn điều kiện trên biênvà điều kiện
ban đầu.
- Hiệu chỉnh và kiểm chứng mô hình.
- Mô phỏng mô hình theo các kịch bản tính toán.
- Phân tích kết quả tính toán.
Chương 2 – HIỆN TRẠNG CÔNGTRÌNH BẢO VỆ BIỂN KHU VỰC NGHIÊN CỨU
2.1 Đặc điểm tự nhiên, điều kiện khí tượng, thủy văn khu vực cửa Thuận An
Về đặc điểm tự nhiên: Cửa Thuận An cùng với cửa Tư Hiền là một trong hai cửabiển nối
hệ thống đầm phá Tam Giang – Cầu Hai với Biển Đông. Cửa Thuận An là cửa chính nằm ở phía
bắc của hệ đầm phá. Phía bắc cửa Thuận An là xã Hải Dương và phía nam là thị trấn Thuận An.
Cửa Thuận An có hình dạng không đối xứng có hệ thống bãi ngầm ở phía ngoài tại vị trí trung
tâm của cửa. Hệ thống luồng chủ yếu có 2 hướng chính: thứ nhất theo hướng đông bắc và thứ hai
có hướng đông nam, nguyên nhân là do các tácđộngcủa các yếu tố thủy động lực có tính chất
mùa và không đều nhau [6]. Cửa có độ rộng vào khoảng 350m và chiều dài khoảng 600m, chỗ
sâu nhất lên đến trên 15m. Cửa Thuận An giữ một vai trò điều hòa về sinh thái và môi trường
cho đầm phá Tam Giang. Trong mùa mưa nó còn đóng vai trò quan trọng trong việc tiêu thoát lũ.
Về kinh tế xã hội đây là cửabiểnvà là tuyến luồng chính đi vào cảng Thuận An – cảng nằm sâu
trong đầm phá – và vào hầu hết các nhánh sôngcủatỉnh Thừa Thiên Huế. Bản đồ khu vực cửa
Thuận An vàvùnglậncận được mô tả trên hình 1[4].
Về đặc điểm khí tượng: Khu vực đầm phá Tam Giang – Cầu Hai nằm trong khu vực có
khí hậu nhiệt đới gió mùa. Hai mùa gió chính đó là mùa gió đông bắc xảy ra vào các tháng 11,
12, 1 và 2 và mùa gió tây nam xảy ra vào các tháng 6, 7, 8 và 9. Ngoài ra khu vực này còn chịu
tác độngcủa một số cơn bão nhiệt đới, đặc biệt nhiều cơn bão có cường độ mạnh đi thẳng trực
tiếp vào từ biển Đông.
Về đặc điểm thủy văn: Đây là khu vực có các đặc điểm về thủy, hải văn phức tạp. Về chế
độ thủy văn, cửa Thuận An là nơi tiêu thoát nước của hầu hết các con sông đổ vào đầm phá Tam
Giang. Trong thời gian mùa lũ (tháng 10 đến tháng 1 năm sau) lưu lượng trong các sông tăng rất
cao do địa hình khu vực phía sau là núi rất dốc. Cá biệt trong một số năm lượng nước lớn làm vỡ
đoạn bờ biển Hòa Duân tạo ra cửa thứ 2 thông ra biển. Độ cao mực nước thủy triều tạiđây khá
nhỏ (biên độ dao động khoảng 0.25m [3]) và là khu vực bán nhật triều đều. Chế độ sóng chịu tác
động của chế độ gió mùa. Các sóng có hướng E và NE chiếm tới trên 90% trong tổng phần trăm
của năm.
2.2 Hiện trạng xây dựng côngtrình bảo vệ bờ tạicửa Thuận An
Từ năm 1980, tình hình xói lở ở ven bờ biểntỉnh Thừa Thiên Huế, dọc theo đoạn bờ biển
từ Hải Dương đến Hòa Duân trở thành một vấn đề nguy kịch. Xói lở chủ yếu tácđộng đến bờ
biển tại hai vị trí: xã Hải Dương (phía bắc cửa Thuận An) với cường độ xói lở 10m/năm và xã
Thuận An – Phú Thuận (phía nam cửa Thuận An) với cường độ xói lở 5-6m/năm. Xói lở gây tác
hại trầm trọng đến bãi biển du lịch Thuận An, đe dọa sự phát triển du lịch trong khu vực. Do vậy
đầu năm 2006 Ủy ban nhân dân tỉnh Thừa Thiên Huế đã phê duyệt dự án xây dựng côngtrình
“xử lý khẩn cấp khắc phục xói lở bờ biển Hải Dương và chỉnh trị luồng cảng Thuận An”. Trong giai
đoạn 1 xây dựng hai hệ thống kè biển chống xói lở tại bờ phía bắc (xã Hải Dương) và phía nam
(xã Thuận An). Hệ thống kè đã được khởi công xây dựng vào đầu năm 2008. Kết cấu hệ thống
kè tại Thuận An được mô tả trong hình vẽ :
Hình 1. Hệ thống kè biểntạicửa Thuận An
Sau thời gian xây dựng hệ thống kè, hiện tượng xói lở và bồi tụ tại các vùng bờ biển có
sự thay đổi mạnh mẽ. Trong thời gian từ tháng 1/2007 đến nay, trong khuôn khổ dự án hợp tác
Việt Nam – Thụy Điển về phát triển bền vững các vùng ven biển Việt Nam, Viện Cơ học đã tiến
hành đo đạc và quan trắc các yếu tố thủy động lực, biếnđộng bãi biểnvà đường bờ tại khu vực
cửa Thuận An. Các số liệu đo đạc góp phần quan trọng trong việc đánh giá, hiệu chỉnh và kiểm
chứng các mô hình tính toán. Trong bảng 1 đưa ra thống kê các đợt khảo sát đo đạc tạicửa
Thuận An trong thời gian từ tháng 1/2007 đến nay.
Chương 3 - MÔ HÌNH VẬNCHUYỂNTRẦMTÍCHVÀ CÁC KẾT QUẢ TÍNHTOÁN
Hệ thống mô hình ven bờ là tổ hợp của các mô hình tínhtoán sóng, dòng chảy, vậnchuyển
trầm tíchvàbiếnđộng bãi biển trong khu vực ven bờ. Hệ thống được xây dựng nhằm áp dụng
tính toán trong các luồng tầu vàvậnchuyểntrầmtíchtại các cửasôngvàbiếnđộngcủa bãi biển.
Các môdun là một phần trong hệ thông mô hình SMS, được xây dựng và phát triển tínhtoán với
nhiều công cụ hỗ trợ về công nghệ GIS và được triển khai trên hệ thống máy tính cá nhân cũng
như hệ máy tínhsong song. [7,8,9,10,11]
3.1 Cơ sở lý thuyết CMS-flow
Phương trìnhchuyểnđộng
CMS-flow sử dụng phương pháp thể tích hữu hạn để giải hệ phương trìnhchuyểnđộngvà
phương trình liên tục dưới dạng tích phân hai chiều trung bình theo độ sâu. Các thành phần vận
tốc được tính theo hai thành phần phương ngang. Dướiđây là hệ phương trình được sử dụng
trong CMS-flow.
+
+
+
= 0 (1)
+
+
+
1
2
+
2
=
+
+ (2)
+
+
+
+
+
1
2
+
2
=
+
(3)
+
+
Trong đó:
h – độ sâu cột nước trong trạng thái tĩnh,
η – độ cao của dao động mực nước,
t – thời gian,
q
x
– thông lượng trên một đơn vị bề rộng theo phương x,
q
y
– thông lượng trên một đơn vị bề rộng theo phương y,
u – thành phần vận tốc theo hướng x,
v – thành phần vận tốc theo hướng y,
g – gia tốc trọng trường,
D
x
– hệ số khuyếch tán theo hướng x,
D
y
– hệ số khuyếch tán theo hướng y,
f - Tham số Coriolis,
τ
bx
- ứng suất đáy theo phương x,
τ
by
- ứng suất đáy theo phương y,
τ
wx
- ứng suất gió theo phương x,
τ
wy
- ứng suất gió theo phương y,
τ
Sx
- ứng suất sóng theo phương x,
τ
Sx
- ứng suất sóng theo phương y.
Các thành phần vận tốc được tínhtoán từ thông lượng như sau:
=
+
(4)
=
+
(5)
Trong trạng thái không có tácđộngcủa sóng, ứng suất đáy được tính như sau:
=
(6)
=
(7)
Phương trìnhtínhtoánvậnchuyểntrầmtíchvàbiến đổi đáy biển:
Trong CMS-flow các hệ phương trìnhtínhtoánvậnchuyểntrầmtíchvàbiến đổi đáybiển
được tínhtoán theo ba công thức:
- Công thức của Wantanabe (1987), tínhtoánvậnchuyểntrầmtích tổng cộng bao gồm:
tính toánvậnchuyểntrầmtích lơ lửng và di đáy
- Công thức tínhvậnchuyểntrầmtíchcủa Lund-CIRP (Camenen và Larson 2006). Công
thức tính lượng trầmtích tổng cộng kết hợp từ công thức tínhvậnchuyểntrầmtích lơ
lửng vàcông thức tínhvậnchuyểntrầmtích di đáy.
- Tínhtoánvậnchuyểntrầmtích tổng cộng dựa theo công thức tínhvậnchuyểntrầmtích
lơ lửng của VanRijn kết hợp công thức tínhvậnchuyểntrầmtích di đáycủa Lund-CIRP.
Trong báo cáo này các tác giả sử dụng công thức tínhtoánvậnchuyểntrầmtíchcủa Lund-
CIRP.
Công thức Lund – CIRP sử dụng trong CMS-flow theo hai phương thức:
Thứ nhất, tínhtoán lượng vậnchuyển tổng cộng dựa vào sự kết hợp củavậnchuyểntrầmtích
lơ lửng và di đáy. Cách thức thứ hai sử dụng phương trình bình lưu khuyếch tán. Trong phần tiếp
theo nhân tố độ nhám và ma sát đáy áp dụng trong CMS-flow sẽ được giới thiệu, tiếp đó là vận
chuyển trầmtích dạng lơ lửng và di đáy.
Độ nhám và hệ số ma sát:
Độ nhám củađáy được xem như tổng hợp của ba thành phần, tính chất củatrầmtích k
sd
, hình
dạng k
sf
và kích thước k
ss
(Soulsby 1997). Độ nhám tổng cộng được xem như là tổng của ba
thành phần trên:
=
+
+
(8)
Hệ số nhám gây ra do tính chất củatrầmtích được xác định như sau:
= 2.5
50
(9)
Công thức tínhvậnchuyểntrầmtíchđáyCông thức tínhtoánvậnchuyểntrầmtíchđáy q
b
dướitácđộngcủasóngvàdòngchảy được
Camenen và Larson (2005) đưa ra như sau:
(1)
50
3
=
,
(1)
50
3
=
,
(10)
Trong đó chỉ số w và n tương ứng theo hướng củasóngvà hướng vuông góc với hướng
truyền sóng, a và b là các hệ số, θ
cw,m
và θ
cw
là các giá trị của tham số Shield trung bình và cực
đại dướitácđộngđồng thời củasóngvàdòngchảy chưa kể đến độ nhám của đáy.
Vận chuyểntrầmtích lơ lửng:
Công thức tínhvậnchuyểntrầmtích lơ lửng q
s
dựa trên giả thiết sự phân bố nồng độ
trầm tích theo hàm mũ dọc theo mặt cắt theo phương thẳng đứng và tốc độ dòngchảy là đồng
nhất. Công thức của Camenem và Larson (2006) đưa ra như sau:
=
1
(11)
Trong đó: W
f
– tốc độ lắng đọngcủatrầm tích, C
R
– nồng độ trầmtíchvà ε- hệ số xáo
trộn. Hướng củavậnchuyểntrầmtích lơ lửng được xem như trùng với hướng dòng chảy, bởi vì
trong một chu kỳ sóng lượng vậnchuyểntrầmtích lơ lửng là bằng 0.
Phương trình bình lưu khuyếch tán
Vận chuyểntrầmtích tổng cộng gồm hai thành phần, vậnchuyểntrầmtích lơ lửng vàvận
chuyển trầmtích di đáy. Các công thức tínhvậnchuyểntrầmtích lơ lửng và di đáy dựa trên ứng
suất trượt tại từng vị trí. Tuy nhiên trong một số trường hợp lượng vậnchuyểntrầmtích lơ lửng
biến đổi mạnh như tại các cửa sông, lạch triều, luồng tàu vàtại các chân công trình, khi đó không
thể tínhvậnchuyểntrầmtích dựa vào các lực tácđộngtại chỗ. Trong trường hợp này phương
trình bình lưu khuyếch tán được sử dụng. Trong CMS-flow, phương trình bình lưu khuyếch tán
thu được từ tích phân liên tục trung bình theo độ sâu của thành phần vậnchuyểntrầmtích lơ
lửng.
()
+
(
)
+
(
)
=
+
+ (12)
Trong đó:
C – nồng độ trầmtích trung bình theo độ sâu,
d – độ sâu nước tổng cộng d=h+η,
h – độ sâu mực nước tĩnh,
η – độ cao dao động mực nước,
t – thời gian,
q
x
– thông lượng trên một đơn vị bề rộng songsong với trục x,
q
y
– thông lượng trên một đơn vị bề rộng songsong với trục y,
u – tốc độ dòngchảy trung bình theo độ sâu theo hướng x,
v – tốc độ dòngchảy trung bình theo độ sâu theo hướng y,
K
x
– hệ số khuyếch tán củatrầmtích theo hướng x,
K
y
– hệ số khuyếch tán củatrầmtích theo hướng y,
P – lượng trầmtích đến,
D – lượng trầmtích bị mất đi.
Phương trình thay đổi đáy được viết như sau:
=
1
1
+
+ (13)
Ở đây: q
bx
– Suất vậnchuyểntrầmtích di đáy theo hướng trục x,
q
by
– Suất vậnchuyểntrầmtích di đáy theo hướng trục y,
p – độ xốp củatrầm tích.
Lượng trầmtích bị nhấc lên và lắng đọng được tính như sau:
=
=
=
(14)
=
0
ở đây: c là nộng độ trầmtíchcân bằng tại một độ sâu cho trước,
z là phương thẳng đứng.
Lưới tính:
Để tăng tối đa hiệu quả của bộ nhớ cho máy tính có thể áp dụng được trong các vùng bờ
phức tạp, lưới tính trong CMS- flow được lập dưới dạng các mảng một chiều.Trong CMS-flow
lưới tính cho dưới dạng lưới thẳng, các ô lưới có thể đều hoặc không đều. Mỗi một ô lưới gồm có
chỉ số i và j tương ứng với trục x và y của miền lưới tính. Mực nước được tínhtại trung tâm ô
lưới, các thành phần tốc độ x và y được tínhtại trung tâm cạnh phía bên trái và cạnh dưới đáy,
các giá trị thông lượng cũng được tínhtại các vị trí giống như các thành phần tốc độ.
Điều kiện ổn định:
Để đảm bảo sự ổn định của sơ đồ hiện, bước thời gian cực đại được tính theo hệ số
Courant do Richtmyer và Morton đưa ra (
Δs
Δt
uξ
)<1. Thông thường ngoài thuỷ triều còn có
nhiều tácđộng khác, các thành phần củadòngchảy có thể được tạo ra do gió, các sóng, và lưu
lượng củasông đổ ra. Mỗi tácđộng sẽ sinh ra một tốc độ tương ứng vì vậy số Courant được xác
định chính xác hơn bằng:
Δs
Δt
)uuu(uξ
tributarywaveswindtide
(15)
với
tide
u
là vận tốc dòngchảy do thủy triều,
wind
u
là tốc độ dòngchảy do tácđộngcủa gió
waves
u
là vận tốc dòngchảy sinh ra do sóng,
tributary
u
là tốc độ dòngchảy do sông đổ ra. Trong các vùng
có dòngchảy mạnh, như là tạivùng thuỷ triều dâng, rút mạnh (lạch triều) dòng triều chiếm ưu
thế còn trong vùngsóng đổ, dòngchảy sinh ra do sóng có thể mạnh hơn đáng kể so với dòng
triều. Tại các vùng này thông thường cần chia độ phân giải bước lưới theo không gian nhỏ hơn.
Sự kết hợp của các dòngchảy mạnh và các ô lưới nhỏ giới hạn kích thước bước thời gian cho
phép.
Điều kiện biên:
Mô hình CMS-flow sử dụng sáu loại điều kiện biên, và có thể chỉ ra cụ thể biêntácđộngvà
không tác động. Nguồn số liệu CMS-flow sử dụng làm điều kiện biên là các số liệu quan trắc đo
đạc (do người sử dụng cung cấp dạng các file), số liệu từ các mô hình có miền tính lớn hơn như
ADCIR (thông qua các mô đun tự động) và các mô hình khác (dạng các file đầu vào). Các điều
kiện biên gồm có.
+ Đều kiện biên mực nước cho dưới dạng các sóng triều: trong mô hình CMS-flow có
thể cho phép tínhtoán với tám sóng triều khác nhau gồm có (M
2
, S
2
, N
2
, K
2
, K
1
, O
1
, M
4
, và M
6
).
+ Điều kiện biên mực nước cho dưới dạng chuỗi mực nước theo thời gian: loại điều kiện
này được cho bằng file các giá trị mực nước.
+ Điều kiện biên mực nước và tốc độ dòngchảy theo thời gian: loại điều kiện biên này áp
đặt các giá trị mực nước và tốc độ dòngchảy theo thời gian tại các ô lưới trên biên.
+ Điều kiện biên lưu lượng theo thời gian: theo cách này, tại các ô trên biên sẽ được gán
giá trị lưu lượng.
+ Điều kiện biên phản xạ, không thấm: loại biên này thường gặp tại nơi giao nhau giữa
đất và nước được coi như mặt tường. Tại các ô lưới biên kiểu này, nước chỉ có thể chảy theo
hướng songsong với mặt tiếp giáp đất và nước mà không thấm qua nó.
+ Điều kiện biên thích ứng theo trường sóngvà trường tốc độ: điều kiện bên này cho
phép tính đến các hiệu ứng của trường sóng đến mực nước ở vùng sát bờ (các hiệu ứng nước
dâng, nước rút do sự biến đổi của thành phần ứng suất bức xạ sóng vuông góc với bờ). Đây được
coi là một điểm mới đối với các mô hình tínhtoándòngchảy khu vực sát bờ.
+Tính toán khô ướt: Trong CMS-flow đã sử dụng các kỹ thuật khác nhau để mô phỏng
hiện tượng khô ướt như phương trình bar cát, đập nước (Reid và Bodine 1968) và các bài toán
biên di động (Yeh và Chou 1978).
Mỗi ô ướt sẽ được kiểm tra sau mỗi bước tính xem nó có trở thành khô không sau khi tính được
các giá trị mực nước và tốc độ của bước tính đó cho toàn bộ lưới tính. Chỉ tiêu để ô tính nà trở
thành khô là:
crji,ji,ji,
DηdD
(16)
Với
ji
D
,
là độ sâu nước tổng cộng,
cr
D
là độ sâu nước mà dưới đó các ô được coi là khô và
ngược lại mỗi ô khô sẽ được kiểm tra sau mỗi bước tính xem nó có trở thành ướt không khi độ
sâu nước tổng cộng vượt quá
cr
D
và nước chuyểnđộng về phía ô khô.
3.2 Cơ sở lý thuyết CMS-wave
Mô hình CMS-wave là mô hình tínhtoánlan truyền phổ sóng dựa trên việc giải phương
trình cân bằng tácđộngsóng dạng ổn định trên lưới không đồng nhất trong hệ tọa độ Đề các. Mô
hình có khả năng tínhtoán quá trình phát triển vàlan truyền sóng do gió, hiệu ứng khúc xạ, phản
xạ, mất mát năng lượng do ma sát đáy, sóng bạc đầu vàsóng đổ. Ngoài ra các quá trình tương tác
giữa các sóng, sóng với dòng chảy, sóng leo, nước dâng do sóngvàsóng truyền qua các công
trình cũng được tính toán.
Công thức sử dụng theo Mase 2001 như sau:
(
)
+
(
)
+
(
)
=
2
2
2
2
(17)
Trong đó,
=
(,)
(18)
Là mật độ tácđộng sóng, E(σ,θ) là năng lượng sóng, σ tần số sóng, θ hướng sóng.
Nhiễu xạ sóng:
Thành phần nhiễu xạ sóng trong phương trình là.
2
2
2
2
(19)
Trong dó κ là hệ số nhiễu xạ , hệ số này cần được hiệu chỉnh kỹ lưỡng khi sóng truyền
vào khu vực có các công trình. Nếu trong tínhtoán có sử dụng tính nhiễu xạ sóng hệ số κ được
lấy >0 và không tính đến nhiễu xạ sóng κ = 0. Trong CMS-wave hệ số κ được lấy giá trị mặc
định =4.
Tương tácsóngvàdòngchảy
Các thành phần vận tốc C
x
, C
y
và C
θ
được viết như sau:
=
+ (20)
=
+ (21)
=
2
+
2
+
2
(22)
ở đây U và V là thành phần vận tốc dòngchảy theo hướng x và y. k là số sóngvà h là độ sâu
nước. Mối liên hệ giữa tần số góc tương đối σ, tần số góc tuyệt đốiv ω, số sóng k vàvận tốc dòng
chảy
=
2
+
2
theo Jonsson 1990 là được mô tả theo công thức.
=
.
(23)
Và
σ
2
= gktanh(kh)
Trong đó
.
được gọi là thành phần Doppler-shifting.
Sự khác biệt chính khi tínhtoán sự truyền sóng khi có và không có mặt dòngchảy chính
là tìm ra tần số thực sự của sóng. Xem xét sự phân tán của thành phần Doppler-shifting cho thấy
rằng sẽ không giải được khi các sóng bị chặn hoàn toàn bởi dòng chảy, theo Smith 1998, Larson
và Kraus 2002, nếu tốc độ nhóm sóng C
g
nhỏ hơn dòngchảy ngược hướng sẽ là.
=
<
.
/ (24)
Như vậy sóng không thể tiếp tục truyền khi bị dòngchảy đủ mạnh ngược hướng chặn lại.
Khi đó hầu hết năng lượng sẽ bị mất đi do sóng đổ, một phần nhỏ bị phản xạ hoặc chuyển xuống
các sóng có tần số nhỏ hơn. Trong CMS-wave khi sóng bị chặn, khi đó mật độ tácđộngsóng
được coi bằng 0.
3.3 Kết nối giữa CMS-flow và CMS-wave
Để giải quyết đồng thời các yếu tố động lực sóng, dòng chảy, và mực nước, mô hình CMS-
flow có thể kết nối với mô hình tínhsóng CMS-wave. Việc kết kết nối được thực hiện thông qua
mô đun điều khiển trong hệ thống SMS. Nhờ khả năng kết nối này mà hai mô hình có thể trao
đổi các dữ liệu cho nhau. Trong khi kết nối, hai mô hình được đặt trên hai hệ trục toạ độ khác
nhau hoặc trùng nhau trong miền tính phụ thuộc vào sự định hướng của đường bờ với hệ trục toạ
độ. Hệ thống SMS tự độngtínhtoán các phép quay cần thiết của các hệ trục toạ độ khi trao đổi
các trường kết quả tính giữa hai mô hình. Thông qua mô đun điều khiển, có sáu cách lựa chọn
tương tác cho việc kết nối giữa hai mô hình như sau:
+ Trao đổi một chiều: Các građien ứng suất bức xạ và các tham số sóng từ mô hình
CMS-wave cung cấp cho mô hình CMS-flow.
+ Trao đổi một chiều: Dòngchảy từ mô hình CMS-flow cung cấp cho mô hình CMS-
wave
[...]... vàbiếnđộngđáy để tínhtoán chế độ động lực vàbiến đổi đáy khu vực cửa Thuận An và các khu vực lậncận với sự có mặt của các côngtrình chỉnh trị Qua phân tíchtài liệu và kết quả tính toán, các quá trìnhđộng lực học, vậnchuyểntrầmtíchvàbiến đổi đáybiển đã có sự thay đổi khi có mặt củacôngtrình chỉnh trị tạicửa Thuận An Trong thời gian đầu côngtrình kè ở bờ nam cửa Thuận An gây biến động. .. thời mô phỏng sự vậnchuyểntrầmtíchvàbiếnđộng bãi biển được thiết lập theo các thông số đã được hiệu chỉnh tại phần trên Tínhtoánvậnchuyểntrầmtíchvàbiến đổi đáy được thực hiện theo 6 hướng sóng chính, trong mỗi hướng sóng được tínhtoán trong 720 giờ (30 ngày) Kết quả tínhtoánvậnchuyểntrầmtíchvàbiến đổi đáybiển được trình bày theo 3 dạng: Thứ nhất, kết quả được trình bày trên các... ta tínhtoán được mức độ biếnđộng tổng cộngcủa từng mặt cắt dướitácđộng tổng hợp của các hình thế hướng sóng Giá trị độ sâu trên mỗi mặt cắt trước và sau khi tínhtoán cho thấy bức trang về biếnđộngđáybiển trong mỗi mặt cắt Hình 13 So sánh biếnđộng địa hình tại mặt cắt số 3 dướitácđộngcủa các hướng sóng khác nhau Hình 14 So sánh biếnđộng địa hình tại mặt cắt số 3 dướitácđộng tổng hợp của. .. quả tínhtoán bồi xói sau 30 ngày với sóngtácđộng có hướng từ 330 đến 0 độ Như vậy từ các tính trên ta thấy, các hướng sóng có tácđộng mạnh nhất đến quá trìnhvậnchuyển trầm tíchvàbiến đổi đáy là các hướng sóng trong trường hợp 2, 3 và 4 tương ứng với trường sóng có hướng ĐôngvàĐông bắc Các hướng sóng này chiếm tới 92.58 % trong chuỗi sóng Các tácđộngcủasóng tới quá trìnhvậnchuyển trầm tích. .. 5 Kết quả tínhtoán cho từng hình thế hướng sóngtại mỗi mặt cắt được trình bày trên hai hình vẽ: Hình vẽ biểu diễn sự biếnđộngđáybiểntại mỗi mặt cắt dưới sự tácđộngcủa từng hình thế hướng sóngvà Hình vẽ so sánh địa hình đáy trước và sau khi tínhtoánbiếnđộngđáybiểndướitácđộng tổng hợp của tất cả các hình thế sóng Dựa trên sự phân bố tần suất phần trămcủa các hình thế hướng sóng theo... như các tínhtoán liên tục Một phương pháp được Roelvink J A (2001) và các cộng sự đưa ra đó là sử dụng chuỗi tham số sóng từ đó thống kê, phân tích xác định giá trị tham số sóng có tácđộng tới vậnchuyểntrầmtíchvàbiến đổi đáy Theo phương pháp này, giá trị chiều cao sóng có tácđộng đến quá trìnhvậnchuyển trầm tíchvàbiến đổi đáy được sử dụng trong tínhtoán thay vì sử dụng giá chiều cao sóng. .. liệu phân tích thống kê các tham số sóng cho 6 hướng truyền sóng có tácđộng đến vận chuyểntrầmtích và biển đổi đáy Trong đó hướng truyền sóng có tần suất lớn nhất là sóng có hướng từ 60 đến 90 độ (theo hướng khí tượng) tương ứng với sóng hướng từ đông bắc đến đôngĐây cũng là 6 phương án với các tham số sóng sẽ được sử dụng trong tínhtoánvậnchuyểntrầmtíchvàbiếnđộngđáybiển được trình bày... Trong các vùngbiển như tạicửa Thuận An, dao động mực nước khá nhỏ (trung bình 0.25m), gây ra dòngchảy thủy triều không lớn, khi đó các yếu tố sóngđóng vai trò chính trong quá trìnhvậnchuyển trầm tíchvàbiến đổi đáybiển Do vậy các kết quả phân tích chế độ các yếu tố sóng cho chúng ta thấy được bức tranh khái quát về chế độ vậnchuyểntrầmtíchdưới sự tácđộngcủasóng Từ các kết quả phân tích chế... hình 15 và 16 là kết quả phân tích chế độ sóng trong nhiều năm, trong mùa gió đông bắc và mùa gió tây nam, được trình bày dưới dạng các hoa sóng Hình 4 Hoa sóngtạitrạm ngoài khơi trong nhiều năm Trong tínhtoánvậnchuyểntrầmtích các yếu tố sóngđóng vai trò quan trọng, sóng là tác nhân chính trong việc khuấy độngtrầmtíchvà gây ra dòngchảy trong vùng nước nông ven bờ đặc biệt là trong vùng sóng. .. trong mỗi bước tính để tínhdòngchảy do sóngvàvậnchuyểntrầmtích Quá trìnhsongsong với nó là CMS-wave sử dụng trường dòng chảy, điều kiện địa hình đã được cập nhật mực nước vàbiến đổi đáy vào trong tínhtoán trường sóng Hai quá trìnhtínhtoán diễn ra songsong với bước thời gian trao đổi cập nhật các tham số là 3 giờ Tổng lượng thời gian tínhtoán trong một phương án hướng sóng là 720 giờ . Tính toán vận chuyển trầm tích và biến động
đáy biển tại vùng lân cận công trình dưới tác
động của sóng và dòng chảy
Dương Công Điển
.
Công thức tính vận chuyển trầm tích đáy
Công thức tính toán vận chuyển trầm tích đáy q
b
dưới tác động của sóng và dòng chảy được
Camenen và Larson
Hình 1.
Hệ thống kè biển tại cửa Thuận An (Trang 5)
h
ình CMS-flow sử dụng sáu loại điều kiện biên, và có thể chỉ ra cụ thể biên tác động và không tác động (Trang 9)
Hình 2.
Lưới tính CMS-flow với biên mực nước và vị trí các kè biển (Trang 12)
Hình 2.
Dao động mực nước trong một chu kỳ triều tại Thuận An 3.4.5 Điều kiện ban đầu (Trang 13)
107.75o
E) như trong hình (14) (Trang 14)
Bảng 3.
Bảng tần suất sóng nước sâu theo các hướng tác động tới đường bờ (Trang 15)
3.6
Thiết lập các thông số và hiệu chỉnh mô hình (Trang 16)
Bảng 4.
Kết quả phân tích các yếu tố sóng theo hướng tác động (Trang 16)
3.6.3
Thiết lập thông số kết nối giữa hai mô hình CMS-flow và CMS-wave (Trang 17)
Hình 5.
Vị trí các trạm quan trắc dao động mực nước và dòng chảy V1 (Trang 17)
Hình 7.
So sánh hướng dòng chảy tính toán với hướng dòng chảy đo đạc tại các tầng Mặt, giữa và đáy tại trạm V1 từ 10 giờ ngày 21/4 đến 10 giờ ngày 22/4/2007 (Trang 18)
Hình 9
Kết quả tính toán bồi xói sau 30 ngày với sóng tác động có hướng từ 90 đến 120 độ Hướng sóng 5(0 đến 30 độ): Các tham số sóng tính toán: H mor =1.76, Tp =6.99, hướng trung bình =42.67, tần suất=4.14 % và dao động mực nước trên biên ngoài của CMS- (Trang 19)
Hình 8.
Kết quả tính toán bồi xói sau 30 ngày với sóng tác động có hướng từ 120 đến 150 độ Hướng sóng 2 (90 đến 120 độ): Các tham số sóng tính toán: H mor =1.32, Tp =6.93, hướng trung bình =-42.42, tần suất= 23.11 % và dao động mực nước trên biên ngoài c (Trang 19)
Hình 10.
Kết quả tính toán bồi xói sau 30 ngày với sóng tác động có hướng từ đến 30 độ Hướng sóng 6 (330 đến 0 độ): Các tham số sóng tính toán: H mor =1.06, Tp =5.81, hướng trung bình = 72.57, tần suất = 1.58% và dao động mực nước trên biên ngoài của (Trang 20)
Hình 12.
vị trí các mặt cắt từ 1 đến 5 (Trang 21)
t
quả tính toán cho từng hình thế hướng sóng tại mỗi mặt cắt được trình bày trên hai hình vẽ: Hình vẽ biểu diễn sự biến động đáy biển tại mỗi mặt cắt dưới sự tác động của từng hình thế hướng sóng và Hình vẽ so sánh địa hình đáy trước và sau khi tín (Trang 21)
Hình 13.
So sánh biến động địa hình tại mặt cắt số 3 dưới tác động của các hướng sóng khác nhau (Trang 22)
Hình 14.
So sánh biến động địa hình tại mặt cắt số 3 dưới tác động tổng hợp của tất cả các hướng sóng với độ sâu ban đầu (Trang 22)
Hình 15.
Kết quả đo đạc đường bờ tại Thuận An tháng 6 năm 2012 (Trang 23)