Quy trình chế tạo và nghiên cứu các đặc trưng nhạy khí của cảm biến trên hệ vật liệu ZnO và ZnO pha tạp Pd được trình bày trên hình 3.6.
Đo độ nhạy phụ thuộc vào nhiệt độ hoạt động của 5 cảm biến
ứng với 5 mẫu
Đo đạc các đặc trưng nhạy khí
Xác định được nhiệt độ hoạt động tối ưu cho từng cảm biến Xác định được mẫu cho độ
nhạy tốt nhất với Hydro
Cảm biến: ZnO-(0,5)Pd Nhiệt độ hđ: 250 Co
Đo độ chọn lọc Đo đặc trưng hồi đáp Đo độ ổn định
Đo độ nhạy Phụ thuộc độ ẩm
Hệ vật liệu ZnO: Pd Chế tạo 5 cảm biến
ZnO ZnO-(0,5)Pd ZnO-(1)Pd ZnO-(2)Pd ZnO-(3)Pd
Hình 3.6. Quy trình nghiên cứu cảm biến khí hyđrô
Với mục tiêu chế tạo cảm biến nhạy khí hyđrô để có thể phát hiện, đo đạc và cảnh báo sớm nồng độ hyđrô trước ngưỡng giới hạn cháy nổ mức thấp 0- 100 % LEL (hay 0 – 4% thể tích khí hyđrô), chúng tôi đã lựa chọn chế tạo cảm biến dạng xúc tác. Cảm biến dạng xúc tác có ưu điểm là đo được nồng độ khí cháy nổ ở dải nồng độ cao,
thời gian đáp ứng nhanh, tín hiệu tuyến tính, ít bị ảnh hưởng bởi độ ẩm và nhiệt độ, rất ổn định và tuổi thọ cao. Đáp ứng mục đích ứng dụng cảm biến khí cho thiết bị đo và cảnh báo liên tục nồng độ khí H2 trong môi trường không khí, thiết kế cảm biến phải đảm bảo các yêu cầu sau:
Có dải nồng độ đo phù hợp thực tế ứng dụng.
Thời gian đáp ứng nhanh.
Có độ ổn định cao khi môi trường không khí có sự biến đổi về nhiệt độ và độ ẩm.
Tuổi thọ cao (đáp ứng được yêu cầu hoạt động liên tục 24/24 giờ). Nhỏ, gọn và có thể chế tạo được ở các quy mô khác nhau.
Dễ ứng dụng cho thiết kế thiết bị.
Kết quả nghiên cứu thiết kế và chế tạo cảm biến hyđrô dạng nhiệt xúc tác được trình bày dưới đây.
Cấu hình:
Cảm biến khí dạng nhiệt xúc tác có cấu tạo lớp nhạy khí phủ trên lò vi nhiệt theo dạng mặt phẳng hoặc dạng hình khối như trình bày trên hình hình 3.7.
Với cấu hình dạng khối: lò vi nhiệt cấu tạo từ dây Pt (với đường kính cỡ 30-50 µm) được tạo theo dạng lò xo. Sau đó vật liệu nhạy khí được phủ lên lò vi nhiệt Pt này tạo thành khối dạng hình cầu hoặc hình trụ.
Với cấu hình dạng phẳng: lò vi nhiệt Pt được in trên đế, vật liệu nhạy khí phủ trực tiếp trên lò vi nhiệt Pt này dưới dạng màng dày.
Ưu điểm:
Cảm biến dạng khối cho thời gian đáp ứng nhanh, công suất tiêu thụ ít, thời gian khởi động để cảm biến hoạt động nhanh.
Cảm biến dạng mặt phẳng có thể tạo phần bù và phần nhạy khí giống nhau, do đó cảm biến ổn định, có độ bền cơ học tốt hơn. Có thể chế tạo hàng loạt.
Nhược điểm:
Cảm biến dạng khối khó chế tạo phần nhạy khí và phần bù giống nhau. Cảm biến dạng phẳng có nhược điểm về thời gian đáp ứng dài, công suất
Hình 3.7. Cấu hình cảm biến nhiệt xúc tác theo dạng khối và dạng phẳng
Trong luận văn này chúng tôi chọn phương án thiết kế chế tạo cảm biến khí hyđrô trên nguyên tắc nhiệt xúc tác ở dạng mặt phẳng:
Lò vi nhiệt:
Lò vi nhiệt và đế phải được trọn là các vật liệu trơ, chống chịu được trong môi trường nhiệt độ cao, môi trường có các chất oxy hóa khử. Lò vi nhiệt được tạo bởi vật liệu có độ bền trong điều kiện nhiệt độ cao như là hợp kim Ni-Cr, Pt... Ở đây chúng tôi chọn Pt làm lò vi nhiệt. Tuy Pt có giá thành cao nhưng để cho cảm biến hoạt động liên tục ổn định trong môi trường khắc nghiệt thì Pt là vật liệu lý tưởng cho thiết kế cảm biến. Hơn nữa, hệ số điện trở của Pt trên nhiệt độ phù hợp cho thiết kế cảm biến dạng nhiệt xúc tác.
Ở trong luận văn này chúng tôi dùng hồ Pt (bột kim loại Pt trộn chất hữu cơ) tạo lò vi nhiệt. Hồ Pt này được sử dụng tạo lò vi nhiệt trên đế Al2O3 bằng cho công nghệ in lưới. Đế Al2O3 đóng vai trò cố định lò vi nhiệt và lớp vật liệu nhạy khí, oxit Al2O3 là vật liệu tốt để tạo đế do nó có độ dẫn nhiệt và điện kém, có độ bền cao. Lò vi nhiệt Pt được in trên đế Al2O3 bằng công nghệ in lưới với điện trở thiết kế vào khoảng 5-10 Ω tại nhiệt độ phòng. Khi đó tại điện áp cấp cho lò vi nhiệt Pt 1,5 V-100 mA thì nhiệt độ của cảm biến vào khoảng 200 o
C - 300 OC để phản ứng xúc tác xảy ra giữa vật liệu nhạy khí ZnO. Với thiết kế lò vi nhiệt này thì cảm biến phù hợp cho thiết kế thiết bị đo hoạt động liên tục sử dụng điện áp nguồn 5V.
Hình 3.9 là kích thước chi tiết và ảnh chụp của thiết kế cấu hình bộ phận lò vi nhiệt Pt để cung cấp nhiệt lượng cho cảm biến hoạt động và lấy tín hiệu điện trở. Độ rộng của lớp dây dây Pt là 0,3 mm, kích thước của lò 5,46 mm x 4,35 mm. Đế Al2O3 có kích thước 8,46 mm x 6,35 mm x 200 µm. Hình 3.10 là ảnh chụp một loạt các lò vi nhiệt Pt in trên đế Al2O3.
Phần nhạy khí được tạo từ bột oxit nano ZnO pha tạp Pd. Bột này được trộn chất hữu cơ để tạo hồ. Sau đó hồ này được phủ trực tiếp lên toàn bộ lò vi nhiệt Pt đã chế tạo ở trên theo công nghệ in lưới.
Lớp vật liệu nhạy khí được khống chế về kích thước và độ dày, do đó tạo được các cảm biến giống nhau và có thể chế tạo số lượng lớn. Thông thường lớp nhạy khí có độ dày cỡ 40 µm (hình 3.8). Độ dày của lớp vật liệu nhạy khí cũng rất quan trọng, nếu lớp vật liệu này mỏng thì hiệu ứng nhiệt sẻ nhỏ, còn nếu mà lớp này quá dày thì không thích hợp cho vùng nồng độ khí đo thấp do cản trở khả năng dẫn nhiệt đến lò vi nhiệt Pt.
Phần bù:
Một phần nữa của cảm biến cũng rất quan trọng đó là phần bù. Phần bù ở đây đóng vài trò bù trừ độ trôi do nhiệt độ và độ ẩm do đó giữ cho cảm biến hoạt động ổn định. Phần bù đặc biệt quan trọng cho ứng dụng thiết bị đo cảnh báo liên tục. Chúng tôi sử dụng bột oxit Al2O3 có kích thước cỡ 1 µm phủ lò vi nhiệt Pt theo một cách tương tự như phần vật liệu nhạy khí ZnO-Pd.
Ghép nối cảm biến:
Phần nhạy khí và phần bù được nối với dây Pt (đường kính 50 µm) tại mỗi đầu của lò vi nhiệt Pt trên đế Al2O3 thành mạch cầu Wheatston. Lớp tiếp giáp Pt trên đế và dây dẫn Pt cung được gắn kết qua hồ Pt tại mỗi đầu điện cực. Hình 3.11 là sơ đồ mạch cầu của cảm biến gồm có bộ phận nhạy khí đại diện bằng điện trở Rs, bộ phận bù đại diện bằng điện trở Rref và hai điện trở thuần R có giá trị bằng 500 Ohm. Điện trở Pt trên đế Al2O3 có giá trị 5 Ohm. Điện áp nguồn nuôi Vapplied trong khoảng 0,5-3 V để cảm biến hoạt động. Khi điện áp này đặt vào mạch cầu sẽ cung cấp cho cảm biến đến một nhiệt độ hoạt động. Điện áp tín hiệu nối ra của cảm biến là Vout.
Hình 3.9. Cấu hình thiết kế lò vi nhiệt của cảm biến
Hình 3.10. Lò vi nhiệt Pt sau khi được in trên đế Al2O3
Hình 3.11. Sơ đồ mạch cầu của cảm biến dạng xúc tác
Với nhiệt độ hoạt động vào cỡ 200-300 0C thì điện áp cung cấp Vapplied vào khoảng 1,7 V dòng tiêu thụ cỡ 120 mA. Để xác định nhiệt độ chúng tôi sử dụng đầu đo
nhiệt độ Pt100 gắn trên đế Al2O3 để xác định nhiệt độ của cảm biến. Hình 3.12 trình bày sự phụ thuộc nhiệt độ của đế vào điện áp nguồn cung cấp.
0 100 200 300 400 500 600 700 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Vapplied (V) N h iệ t đ ộ ( o C)
Hình 3.12. Đường phụ thuộc nhiệt độ trên đế vào nguồn điện áp cung cấp