I- Ket qua cac ham muc tieu HAM MUC TIEU
2. NGHIÊN CỨU ÁP DỤNG VÀ ĐỀ XUẤT CÁC PHƯƠNG PHÁP TỐI ƯU
Các phương pháp tối ưu toán học có thể áp dụng trong lĩnh vực nông nghiệp cũng rất đa dạng như trong hầu hết các lĩnh vực kinh tế – xã hội khác. Đó là các phương pháp tối ưu đơn mục tiêu và đa mục tiêu, tuyến tính cũng như phi tuyến với các biến liên tục, nguyên cũng như hỗn hợp nguyên. Các tham số của mô hình có thể là các số thực thông thường, các hệ số ngẫu nhiên / biến ngẫu nhiên, các hệ số mờ tuỳ theo bản chất của chúng và của vấn đề cần giải quyết. Vì vậy, ngoài các phương pháp tối ưu cổ điển, có thể áp dụng các phương pháp quy hoạch ngẫu nhiên và quy hoạch mờ. Một số khía cạnh của của quy hoạch ngẫu nhiên và quy hoạch mờ đã được đề cập tới trong bài báo của C. Mohan và Nguyễn Hải Thanh “An interactive satisficing method for solving
multiobjective mixed fuzzy-stochastic programming problems”, International Journal for Fuzzy
Sets and Systems, Vol. 117, No.1, pp. 61-79, 2001, cũng như trong bài báo của Nguyễn Tuấn
cho nông hộ trên địa bàn huyện Trùng Khánh, tính Cao Bằng”, Tạp chí Khoa học kỹ thuật Nông
nghiệp, Tập 4, Số 4+5, trang 175–182, 2006.
Có thể nhận thấy rằng, các dữ liệu đầu vào cũng như các mục tiêu, yêu cầu đưa ra, nhìn chung, chỉ được coi là không đổi / tĩnh (static) trong khoảng thời gian ngắn. Chúng sẽ biến đổi một cách khách quan và được sửa chỉnh một cách chủ quan, tuần tự từ giai đoạn này tới giai đoạn khác, phù hợp với các kết quả đã đạt được. Việc giải các bài toán quy hoạch dài hạn đòi hỏi phải nghiên cứu và áp dụng các phương pháp tối ưu đa dạng như các phương pháp quy hoạch động (dynamic programming), các phương pháp mô phỏng (simulation methods) và nhiều phương pháp tối ưu khác.
Lý thuyết tối ưu toán học cũng gắn liền chặt chẽ với lý thuyết ra quyết định một người ra quyết định hay tập thể / nhóm người ra quyết định. Ngày nay, lĩnh vực này của khoa học quản lý / toán ứng dụng được áp dụng rộng rãi trong nhiều chuyên ngành, bao gồm nhiều lĩnh vực nông nghiệp như quản lý kinh tế ông nghiệp, sử dụng đất và tài nguyên, dự báo thị trường nông sản và ra quyết định đầu tư… Có thể nói, lý thuyết tối ưu toán học tỏ ra rất hiệu quả trong việc “khai phá dữ liệu” còn lý thuyết ra quyết định lại là một công cụ mạnh trong việc “khai phá kinh nghiệm và tri thức”.