Dung lượng hệ thống và QoS

Một phần của tài liệu Tìm hiểu giải pháp công nghệ thoại qua WLAN (Trang 54 - 83)

3.1.1 Phân loại lưu lượng

802.11e chia lưu lượng thành nhiều loại tùy thuộc theo yêu cầu của lưu lượng. Như chúng ta biết, lưu lượng thoại có nhiều yêu cầu hơn so với lưu lượng dữ liệu. Lưu lượng thoại yêu cầu trễ nhỏ nhất và nó chỉ có thể chịu được mức tổn thất nhất định tùy thuộc vào tài nguyên khả dụng của mạng. Mặt khác, lưu lượng dữ liệu chịu rất ít ảnh hưởng bởi trễ và nó cũng chịu được một mức tổn thất nhất định, nhưng mức tổn thất này luôn lớn hơn so với thoại. Do đó, việc phân loại lưu lượng là một bước khởi đầu tốt cho việc thực hiện QoS.

Phân loại lưu lượng bằng cách sử dụng nhiều hàng đợi trong các thiết bị WLAN như trong hình 3.1. Kế thừa chuẩn 802.11, tất cả các lưu lượng (không quan tâm tới nó là thoại hay dữ liệu, video) từ một trạm được truyền từ một hàng đợi đơn. Điều này có nghĩa là các gói thoại (có kích thước nhỏ) có thể bị trễ trong khi truyền dẫn dữ liệu bùng nổ. Nhận thấy rằng vì các gói dữ liệu lớn hơn các gói thoại và lưu lượng dữ liệu thường bùng nổ một cách tự nhiên, điều này sẽ gây trễ cho các gói thoại và do đó việc truyền các gói thoại này sẽ trở lên khó khăn. Một giải pháp được đặt ra là sử dụng nhiều hàng đợi, các hàng đợi riêng chứa thoại và dữ liệu.

Hình 3.1: Phân loại lưu lượng

Với việc sử dụng hàng đợi này, sẽ tạo ra một sự ưu tiên cho các gói thoại để đảm bảo rằng chúng có độ ưu tiên cao nhất trong hàng đợi và được truyền dẫn trước các gói có độ ưu tiên thấp hơn. Tuy nhiên, sự ưu tiên khắt khe như thế này có thể làm mất các gói dữ

liệu. Do đó, 802.11e đưa ra một hướng giải quyết mới là giải quyết sự tranh chấp trong các hàng đợi khác nhau bên trong một trạm giống như giải quyết sự tranh chấp giữa các trạm với nhau bởi việc sử dụng chức năng phân bố phối hợp mới đã đề ra trong WME, đó là sử dụng EDCF.

Nói tóm lại, ý tưởng cơ bản của việc phân loại lưu lượng là mỗi trạm duy trì nhiều hàng đợi (lên tới 8 hàng đợi) cho các loại lưu lượng khác nhau. Mỗi hàng đợi sau đó sẽ đóng vai trò như là một trạm ảo và những trạm ảo này sẽ tranh chấp với nhau để chọn ra gói nào sẽ được truyền dẫn từ trạm thật đó. Quy tắc cạnh tranh giữa các hàng đợi tương tự như quy tắc MAC cho các trạm tranh chấp kênh truyền.

Chú ý rằng 802.11e cho phép một trạm phân loại lưu lượng của nó thành 8 loại khác nhau, mỗi loại lưu lượng có thể được ánh xạ tới một hàng đợi riêng. Tuy nhiên, WME hạn chế số hàng đợi trong một trạm là 4.

3.1.2 EDCF

Giao thức EDCF (Enhanced Distributed Coordination Function) là một phiên bản nâng cao của giao thức DCF của 802.11. Giao thức EDCF đã được thông qua bởi WME (Wireless Multimedia Enhancement) bởi Wi-Fi Alliance như là một chuẩn trước của 802.11e.

Mục tiêu của giao thức EDCF là để đảm bảo ưu tiên truy nhập đến kênh (vô tuyến), do đó lưu lượng thoại có thể dễ dàng truy nhập đến kênh truyền với một độ ưu tiên cao hơn các lưu lượng khác. Chú ý rằng giao thức này chỉ xét cho các hàng đợi trong cùng một trạm. Với mục tiêu là để bảo đảm rằng các gói có độ ưu tiên cao hơn được ưu tiên truy nhập tới kênh truyền.

EDCF thực hiện mục tiêu này bởi việc duy trì các tham số tranh chấp trên mỗi loại lưu lượng. Các tham số mà EDCF sử dụng là: CWmax, CWmin, AIFS, PF.

Để hiểu làm thế nào những tham số này trên mỗi lưu lượng thực hiện truy nhập ưu tiên cho các loại lưu lượng khác nhau, chúng ta cần xem lại vài đặc điểm quan trọng của DCF. Ở một BSS tải vừa phải, khi một trạm muốn truyền dẫn trên kênh vô tuyến, nó phải đợi cho đến khi kênh ở trạng thái tự do. Sau khi biết kênh ở trạng thái tự do, trạm đợi một khoảng thời gian DIFS. Sau khi hết thời gian DIFS, mỗi trạm đợi thêm một khoảng thời gian ngẫu nhiên xác định bởi bộ đếm back-off (BC). Giá trị BC là ngẫu nhiên chọn trọng khoảng từ [0, CW], CW là cửa sổ tranh chấp.

Hình 3.2: Hoạt động EDCF

Đầu tiên, thời gian tối thiểu đợi sau khi kiểm tra kênh phụ thuộc vào từng loại kênh. Thay vì tất cả các lưu lượng phải đợi DIFS trước khi truy nhập môi trường, lưu lượng có mức ưu tiên cao hơn (thoại) phải đời thời gian nhỏ hơn AIFS lưu lượng có độ ưu tiên thấp hơn (dữ liệu) như trong hình 3.2. Tiếp theo EDCF cho phép mỗi hàng duy trì một tập hợp giới hạn các cửa sổ tranh chấp khác nhau. Lưu lượng có độ ưu tiên cao hơn (thoại) có phạm vi giá trị CW giới hạn hơn lưu lượng có độ ưu tiên thấp hơn (dữ liệu). Điều này có nghĩa rằng nếu xảy ra sự tranh chấp giữa gói dữ liệu và gói thoại thì gói thoại có nhiều khả năng hơn được truyền đi.

Cuối cùng, sự truyền dẫn không thành công của một MSDU dẫn tới tăng gấp đôi CW, do vậy làm tăng số lần back-off và khả năng truyền dẫn lại gói. Số lần back-off này ảnh hưởng bất lợi tới lưu lượng thoại hơn là dữ liệu. Để giải quyết vấn đề này, 802.11e đưa ra nhân tố độ bền (PF-Persistence factor). PF được xác định dựa trên mỗi lưu lượng, nó xác định khoảng thời gian bao lâu để mỗi hàng đợi trở lại trước khi thực hiện truyền dẫn lại. Với DCF, PF luôn là 2, vì CW gấp đôi sau khi truyền dẫn không thành công. Trong 802.11e, PF được sử dụng để tính toán giá trị CW mới trong các trường hợp truyền dẫn lỗi như sau: newCW = ((oldCW+1) * PF) – 1. Bằng việc sử dụng một PF thấp hơn cho các hàng đợi thoại có độ ưu tiên cao, các gói thoại có thể được chấp nhận truyền dẫn lại nhanh hơn, vì thế đảm bảo trễ thấp hơn cho các gói thoại.

Trong một trạm, như đã nói ở phần trên các hàng đợi được coi như là một trạm ảo với các tham số khác nhau. Nếu bộ đếm back-off của hai hay nhiều trạm ảo này đạt tới giá trị 0 tại cùng một thời điểm thì có thể coi đó là một xung đột ảo. Cơ hội truyền dẫn (TXOP) được dành cho lưu lượng có độ ưu tiên cao nhất trong các lưu lượng đang xung đột.

Giới hạn CW, AIFS và PF hoạt động cùng nhau để tạo độ ưu tiên truy nhập cho thoại trong 802.11e/WME. Bên cạnh việc cải thiện trễ cho thoại, EDCF cũng cải thiện hiệu suất hệ thống trong môi trường phức tạp có thoại, video, dữ liệu cùng tồn tại.

Chú ý rằng giá trị QoS cho mỗi loại lưu lượng được đưa ra bởi AP, được chứa trong Association Response, Probe Response và báo hiệu. Điều này bảo đảm rằng tất cả các trạm trong BSS, ngoại trừ AP được đối xử công bằng. Một trong những vấn đề làm giới hạn dung lượng của hệ thống và giảm QoS trong chuẩn 802.11 . 802.11e/WME cho phép AP sử dụng các tham số tranh chấp khác nhau hơn các tham số được sử dụng bởi các trạm. Điều này có nghĩa là AP có thể truy cập tới phương tiện với độ ưu tiên cao hơn các trạm trong BSS, điều này giải quyết vấn đề tắc nghẽn cổ chai của AP trong hệ thống VoWLAN.

3.1.3 HCF

Tương tự như EDCF được thông qua trong chuẩn WME bởi Wi-Fi Alliance, HCF được thông qua trong WMM-SA (Wi-Fi MultiMedia-Scheduled Access) xác nhận bởi Wi- Fi Alliance như là sự mở rộng của PCF.

Các lưu lượng thời gian thực (thoại và video) có độ ưu tiên cao hơn khi nó tranh chấp truyền dẫn. Mặt khác, các tham số truy nhập xác định trễ giới hạn cho lưu lượng thời gian thực. HCF thực hiện điều này bằng việc sử dụng phương pháp thăm dò (polling) giống như PCF. Tuy nhiên, phương pháp thăm dò làm phát sinh các chi phí phụ như là khung thăm dò. Do đó, kĩ thuật EDCF (không sử dụng băng thông trong khung thăm dò) sẽ thực hiện tốt dưới các điều kiện tốt cho các tải nhẹ trong khi kĩ thuật HCF thực hiện tốt dưới các điều kiện các tải nặng. Các nhà quản trị mạng của hệ thống VoWLAN phải nắm rõ điều này khi quyết định chọn lựa EDCF hay HCF.

Như chúng ta đã nói, HCF là một phiên bản nâng cao của PCF. Một trong những vấn đề chủ yếu của PCF là khi một trạm được truy nhập tới kênh truyền, truy nhập của nó không phụ thuộc vào thời gian (nó có thể chiếm kênh truyền). TXOP giải quyết vấn đề này bởi việc giới hạn cơ hội truyền dẫn theo thời gian, do vậy khi một trạm truy nhập tới kênh truyền sử dụng quy tác MAC, trạm đó có thời gian giới hạn để nó có thể truy nhập vào kênh truyền. Việc sử dụng TXOP để tránh trễ không dự báo trước là khả thi trong PCF. Do đó, cơ hội truyền dẫn là thời gian tối đa liền kề nhau một trạm có thể sử dụng kênh truyền khi nó được truy nhập vào. Chú ý rằng trong một TXOP, một trạm được cho phép truyền nhiều MSDU với một khoảng SIFS giữa một ACK và khung tiếp theo khi trạm đạt giới hạn TXOP.

HCF sử dụng giao thức EDCF như là một khối tiêu chuẩn và mở rộng khái niệm CFP, CP và thăm dò từ PCF. Tương tự như PCF, thời gian được chia thành các siêu khung. Mỗi siêu khung bao gồm một CP và một CFP. Chỉ HC (được đặt tại AP) có thể truy nhập tới kênh truyền trong thời gian CFP và nó thăm dò các trạm đề đồng ý cho phép truy nhập tới chúng trong thời gian này. Trong thời gian CP, EDCF được sử dụng đề quyết định truy nhập tới kênh truyền.

Không giống với PCF, HCF cho phép HC thăm dò các trạm thậm chí trong thời gian CP. Do đó, trong thời gian một CP, một TXOP bắt đầu khi kênh được xác định khả dụng theo quy luật EDCF hoặc khi trạm nhận được khung thăm dò CF đặc biệt.

Hình 3.3: Hoạt động của HCF

Chú ý rằng sử dụng TXOP để giải quyết vấn đề trễ không báo trước. Trong HCF, TXOP có thể được xác định trong CF thăm dò, nó được gửi tới trạm để chấp nhận trạm truy nhập tới kênh. Trạm sẽ được truy nhập tới kênh truyền trong TXOP này.

Một vấn đề với HCF là nó yêu cầu quản lí tốt trải phổ tần. Với HCF, lịch gói trong AP sẽ là thành phần chủ yếu. Tuy nhiên, thực tết việc lập lịch sẽ không tính đến nhiễu từ các kênh khác hoặc từ các mạng khác sử dụng cùng một phổ tần, nếu phổ tần không hoàn toàn được quản lí. Điều này sẽ làm phức tạp quá trình lập lịch. Do đó, HCF được mong đợi sẽ trở thành các giải pháp cho các doanh nghiệp hay ít ra được sử dụng trong mạng gia đình.

3.1.4 Thực hiện QoS cho VoWLAN

802.11e/WME cung cấp một kĩ thuật cho các thiết bị 802.11giúp ưu tiên các gói thoại hơn các gói dữ liệu trong WLAN. Tuy nhiên, những kĩ thuật này không đủ khả năng thực hiện QoS cho các cuộc gọi VoWLAN vì một cuộc gọi VoWLAN có thể vượt ra ngoài mạng WLAN. Để hiểu được điều này, xét một chiếc điện thoại IP không dây (WIPP) trong một cuộc gọi thoại với chiếc điện thoại hữu tuyến đặt cách xa mạng IP. Hình 3.4 chia QoS đầu cuối tới đầu cuối thành 3 phần: WLAN, LAN hữu tuyến và mạng IP. Bây giờ chúng ta sẽ xem xét cái gì cần để thực hiện QoS của mỗi phần này.

3.1.4.1 WLAN

Trong đường lên, 802.11e/WME thực hiện QoS vì các trạm tranh chấp với nhau để truyền các gói tới AP và các gói thoại có mức ưu tiên cao hơn dữ liệu.

Đầu tiên, thực hiện QoS ở luồng xuống không quan trọng vì AP cũng sử dụng 802.11e/WME để ưu tiên lưu lượng của nó qua môi trường truyền dẫn. Tuy nhiên, có một vấn đề quan trọng là AP cần phân biệt rõ giữa các gói thoại (cả báo hiệu và đa phương tiện) và các gói dữ liệu để ưu tiên một cái hơn cái còn lại. Trong đường lên, các ứng dụng chạy trên trạm chịu trách nhiệm phân loại các gói theo đúng loại. Trong thí dụ của chúng ta, các ứng dụng thoại trên WIPP có thể thông báo cho bộ phận điều khiển WLAN biết những gói nào thuộc loại nào. Tuy nhiên trong đường xuống, AP điều khiển các gói từ một điểm cuối phía xa. Do vậy, nó cần phân loại các gói dữ liệu đường xuống bởi việc kiểm tra gói. AP như là một cây cầu để bảo đảm sự làm việc giữa 802.3 và 802.11. Do đó, theo mô hình phân lớp OSI, nó sẽ chỉ truy nhập tới tiêu đề lớp 2. Hay nói cách khác, cái chúng ta cần là một trường tiêu đề trong 802.3 ở lớp 2 cho các gói đến ở luồng xuống hữu tuyến tại AP có thể kiểm tra để phân loại đúng các gói này.

3.1.4.2 LAN hữu tuyến

Chắc chắn rằng hầu hết các kĩ thuật được triển khai để thực hiện QoS trong mạng LAN hữu tuyến là sử dụng 802.11D/Q. 802.11D cho phép các lớp MAC khác nhau trong họ 802.11 có thể làm việc với nhau. 802.11Q VLAN mở rộng định dạng khung 802.3, và nó xác định mức ưu tiên người sử dụng khung. 802.3 MAC không hỗ trợ bất kì các kênh khác nhau truy nhập tới các lưu lượng ưu tiên khác nhau, nhưng qua 802.3 VLAN, các khung 802.3 MAC có thể chứa các giá trị ưu tiên tương ứng, các giá trị này được quay vòng và có thể được sử dụng bởi MAC 802.1D.

Nếu AP hỗ trợ cả hai 802.11e và 802.11D/Q, nó có thể được sử dụng để thực hiện QoS trong môi trường LAN. Tiếp tục thí dụ của chúng ta, khi một AP nhận một gói Ethernet với một tiêu đề 802.11D/Q, có có thể kiểm tra bits ưu tiên trong tiêu đề để quyết định truyền dẫn gói từ hàng đợi thoại của AP được hay không hoặc hàng đợi BE trong mạng vô tuyến.

Tuy nhiên, vẫn còn một vấn đề là việc chèn bits ưu tiên như thế nào. Ở luồng lên, AP có thể nhận ra gói thoại và gói dữ liệu bởi việc kiểm tra trường ưu tiên trong trường điều khiển QoS của tiêu đề 802.11e/WME MAC và có thể sử dụng những thông tin này để thiết lập các bits ưu tiên trong tiêu đề 802.1D. Tương tự trong luồng xuống, các gói nhận được tại AP hữu tuyến đã có các bits ưu tiên 802.11Q trong 802.1D là phần tiêu đề của 802.3 và AP có thể ánh xạ chúng tới tiêu đề 802.11e.

3.1.4.3 Mạng IP

Khi các gói truyền dẫn từ IPP đã được định trước từ WIPP nằm trong phạm vi AP, không có một con đường hoàn hảo cho AP để biết rằng chúng là các gói thoại. IPP thiết lập các bits ưu tiên 802.1Q/D trong tiêu đề MAC không là một tùy chọn, vì tiêu đề lớp 2

(MAC) bị thay đổi trên mỗi hop và IPP và WIPP có thể được ngăn cách bởi nhiều hop. Vì AP không thể phân biệt giữa các gói thoại va dữ liệu trong luồng xuống hữu tuyến bởi việc xem xét tiêu chuẩn 802.3, nó không thể quyết định gói nào cần được truyền từ hàng đợi thoại của AP và gói nào cần được truyền từ hàng đợi thoại dữ liệu (BE). Việc thực hiện QoS trong luồng xuống vô tuyến cần sử dụng kĩ thuật khác. Đây là nơi mà QoS lớp 3 tham gia vì các tiêu đề lớp 3 được duy trì đầu cuối tới đầu cuối.

DiffServ thường triển khai ở QoS lớp 3. Trong phương pháp này, mỗi gói dữ liệu IP mang một mã dịch vụ khác nhau (DSCP) trong các trường dịch vụ khác nhau (DS), nó nằm trong octet TOS (Type Of Service) của IPv4 và octet phân loại lưu lượng IPv6. Vì IP là giao thức lớp 3 (đầu cuối tới đầu cuối), tiêu đề IP luôn sẵn có và có thể được sử dụng bởi các router trong mạng IP để cung cấp các dịch vụ khác nhau như QoS.

Bây giờ, xét thí dụ của chúng ta về điện thoại IP không dây (WIPP) trong một cuộc thoại với một chiếc điện thoại IP hữu tuyến (IPP). Không cần quan tâm IPP ở trong một mạng IP hay ở trong cùng một mạng LAN với WIPP, nếu chúng quyết định sử dụng DiffServ, giá trị DSXP có thể được sử dụng để phân biệt các gói thoại với các gói dữ liệu

Một phần của tài liệu Tìm hiểu giải pháp công nghệ thoại qua WLAN (Trang 54 - 83)

Tải bản đầy đủ (DOC)

(83 trang)
w