Như vậy, WEP cung cấp bảo mật cho dữ liệu trên mạng không dây qua phương thức mã hóa sử dụng thuật tốn đối xứng RC4 (Hình 3.14), được Ron Rivest, thuộc hãng RSA Security Inc nổi tiếng phát triển. Thuật tốn RC4 cho phép chiều dài của khóa thay đổi và có thể lên đến 256 bit. Chuẩn 802.11 đòi hỏi bắt buộc các thiết bị WEP phải hỗ trợ chiều dài khóa tối thiểu là 40 bit, đồng thời đảm bảo tùy chọn hỗ trợ cho các khóa dài hơn. Hiện nay, đa số các thiết bị khơng dây hỗ trợ WEP với ba chiều dài khóa: 40 bit, 64 bit và 128 bit. Với phương thức mã hóa RC4, WEP cung cấp tính bảo mật và tồn vẹn của thơng tin trên mạng không dây, đồng thời được xem như một phương thức kiểm soát truy cập. Một máy nối mạng khơng dây khơng có khóa WEP chính xác sẽ khơng thể truy cập đến Access Point (AP) và cũng không thể giải mã cũng như thay đổi dữ liệu trên đường truyền. Tuy nhiên, đã có những phát hiện của giới phân tích an ninh cho thấy nếu bắt được một số lượng lớn nhất, định dữ liệu đã mã hóa sử dụng WEP và sử dụng cơng cụ thích hợp, có thể dị tìm được chính xác khóa WEP trong thời gian ngắn. Điểm yếu này là do lỗ hổng trong cách thức WEP sử dụng phương pháp mã hóa RC4.
Hạn chế của WEP
Do WEP sử dụng RC4, một thuật toán sử dụng phương thức mã hóa dịng (stream cipher), nên cần một cơ chế đảm bảo hai dữ liệu giống nhau sẽ không cho kết quả giống nhau sau khi được mã hóa hai lần khác nhau. Đây là một yếu tố quan trọng trong vấn đề mã hóa dữ liệu nhằm hạn chế khả năng suy đốn khóa của hacker. Để đạt mục đích trên, một giá trị có tên Initialization Vector (IV) được sử dụng để cộng thêm với khóa nhằm tạo ra khóa khác nhau mỗi lần mã hóa. IV là một giá trị có chiều dài
24 bit và được chuẩn IEEE 802.11 đề nghị (khơng bắt buộc) phải thay đổi theo từng gói dữ liệu. Vì máy gửi tạo ra IV không theo định luật hay tiêu chuẩn, IV bắt buộc phải được gửi đến máy nhận ở dạng khơng mã hóa. Máy nhận sẽ sử dụng giá trị IV và khóa để giải mã gói dữ liệu.
Cách sử dụng giá trị IV là nguồn gốc của đa số các vấn đề với WEP. Do giá trị IV được truyền đi ở dạng khơng mã hóa và đặt trong header của gói dữ liệu 802.11 nên bất cứ ai lấy được dữ liệu trên mạng đều có thể thấy được. Với độ dài 24 bit, giá trị của IV dao động trong khoảng 16.777.216 trường hợp. Những chuyên gia bảo mật tại đại học California-Berkeley đã phát hiện ra là khi cùng giá trị IV được sử dụng với cùng khóa trên một gói dữ liệu mã hóa (va chạm IV), hacker có thể bắt gói dữ liệu và tìm ra được khóa WEP. Thêm vào đó, ba nhà phân tích mã hóa Fluhrer, Mantin và Shamir (FMS) đã phát hiện thêm những điểm yếu của thuật toán tạo IV cho RC4. FMS đã vạch ra một phương pháp phát hiện và sử dụng những IV lỗi nhằm tìm ra khóa WEP.
Thêm vào đó, một trong những mối nguy hiểm lớn nhất là những cách tấn công dùng hai phương pháp nêu trên đều mang tính chất thụ động. Có nghĩa là kẻ tấn cơng chỉ cần thu nhận các gói dữ liệu trên đường truyền mà không cần liên lạc với Access Point. Điều này khiến khả năng phát hiện các tấn cơng tìm khóa WEP đầy khó khăn và gần như khơng thể phát hiện được.
Hiện nay, trên Internet đã sẵn có những cơng cụ có khả năng tìm khóa WEP như AirCrack, AirSnort, dWepCrack, WepAttack, WepCrack, WepLab. Tuy nhiên, để sử dụng những cơng cụ này địi hỏi nhiều kiến thức chun sâu và chúng cịn có hạn chế về số lượng gói dữ liệu cần bắt được.
b, WPA (Wifi Protected Access)
Wi-Fi Alliance đã đưa ra giải pháp gọi là Wi-Fi Protected Access (WPA). Một trong những cải tiến quan trọng nhất của WPA là sử dụng hàm thay đổi khoá TKIP (Temporal Key Integrity Protocol). WPA cũng sử dụng thuật toán RC4 như WEP, nhưng mã hoá đầy đủ 128 bit. Và một đặc điểm khác là WPA thay đổi khoá cho mỗi gói tin. Các cơng cụ thu thập các gói tin để phá khoá mã hoá đều không thể thực hiện được với WPA. Bởi WPA thay đổi khoá liên tục nên hacker không bao giờ thu thập đủ dữ liệu mẫu để tìm ra mật khẩu. Khơng những thế, WPA cịn bao gồm kiểm tra tính tồn vẹn của thơng tin (Message Integrity Check). Vì vậy, dữ liệu không thể bị thay đổi trong khi đang ở trên đường truyền.
Một trong những điểm hấp dẫn nhất của WPA là không yêu cầu nâng cấp phần cứng. Các nâng cấp miễn phí về phần mềm cho hầu hết các card mạng và điểm truy cập sử dụng WPA rất dễ dàng và có sẵn. Tuy nhiên, WPA cũng khơng hỗ trợ các thiết bị cầm tay và máy quét mã vạch. Theo Wi-Fi Alliance, có khoảng 200 thiết bị đã được cấp chứng nhận tương thích WPA.
WPA có sẵn 2 lựa chọn: WPA Personal và WPA Enterprise. Cả 2 lựa chọn này đều sử dụng giao thức TKIP, và sự khác biệt chỉ là khoá khởi tạo mã hoá lúc đầu. WPA Personal thích hợp cho gia đình và mạng văn phịng nhỏ, khoá khởi tạo sẽ được sử dụng tại các điểm truy cập và thiết bị máy trạm. Trong khi đó, WPA cho doanh nghiệp cần một máy chủ xác thực và 802.1x để cung cấp các khoá khởi tạo cho mỗi phiên làm việc.
Trong khi Wi-Fi Alliance đã đưa ra WPA, và được coi là loại trừ mọi lỗ hổng dễ bị tấn công của WEP, nhưng người sử dụng vẫn không thực sự tin tưởng vào WPA. Có một lỗ hổng trong WPA và lỗi này chỉ xảy ra với WPA Personal. Khi mà sử dụng hàm thay đổi khoá TKIP được sử dụng để tạo ra các khoá mã hoá bị phát hiện, nếu hacker có thể đốn được khoá khởi tạo hoặc một phần của mật khẩu, họ có thể xác định được tồn bộ mật khẩu, do đó có thể giải mã được dữ liệu. Tuy nhiên, lỗ hổng này cũng sẽ bị loại bỏ bằng cách sử dụng những khố khởi tạo khơng dễ đốn (đừng sử dụng những từ như "PASSWORD" để làm mật khẩu).
Điều này cũng có nghĩa rằng kỹ thuật TKIP của WPA chỉ là giải pháp tạm thời , chưa cung cấp một phương thức bảo mật cao nhất. WPA chỉ thích hợp với những cơng ty mà không truyền dữ liệu "mật" về những thương mại, hay các thông tin nhạy cảm... WPA cũng thích hợp với những hoạt động hàng ngày và mang tính thử nghiệm cơng nghệ
c, 802.11i (WPA2)
Một giải pháp về lâu dài là sử dụng 802.11i tương đương với WPA2, được chứng nhận bởi Wi-Fi Alliance. Chuẩn này sử dụng thuật toán mã hoá mạnh mẽ và được gọi là Chuẩn mã hoá nâng cao AES (Advanced Encryption Standard). AES sử dụng thuật toán mã hoá đối xứng theo khối Rijndael, sử dụng khối mã hoá 128 bit, và 192 bit hoặc 256 bit.
Để đánh giá chuẩn mã hoá này, Viện nghiên cứu quốc gia về Chuẩn và Công nghệ của Mỹ, NIST (National Institute of Standards and Technology), đã thơng qua thuật tốn mã đối xứng này. Và chuẩn mã hoá này được sử dụng cho các cơ quan chính phủ Mỹ để bảo vệ các thơng tin nhạy cảm.
Trong khi AES được xem như là bảo mật tốt hơn rất nhiều so với WEP 128 bit hoặc 168 bit DES (Digital Encryption Standard). Để đảm bảo về mặt hiệu năng, q trình mã hố cần được thực hiện trong các thiết bị phần cứng như tích hợp vào chip. Tuy nhiên, rất ít người sử dụng mạng khơng dây quan tâm tới vấn đề này. Hơn nữa, hầu hết các thiết bị cầm tay Wi-Fi và máy qt mã vạch đều khơng tương thích với chuẩn 802.11i.
3.3 Chuyển vùng 3.3.1 Giới thiệu 3.3.1 Giới thiệu
3.3.1.1 Sự cần thiết chuyển vùng
Yêu cầu cơ bản của chuyển vùng xuất phát từ sự suy yếu của tín hiệu trong vùng vơ tuyến. Sự suy yếu này giải thích tại sao tất cả các truyền dẫn vơ tuyến có một giới hạn địa lí nhất định. Điều này có nghĩa là một chiếc điện thoại di động Wi-Fi, trong hầu hết các môi trường, sẽ cần chuyển từ một AP này tới một AP khác khi nó di chuyển ra xa vùng phủ sóng của AP hiện tại. Chúng ta nói trong hầu hết mọi mơi trường vì một ứng dụng của VoWLAN như là một chiếc điện thoại khơng dây thay thế hệ thống với một AP đóng vai trị như là trạm gốc. Điện thoại có thể kết nối tới AP gốc mà khơng cần hỗ trợ hay chuyển vùng. Tuy nhiên trong một môi trường như là một nhà máy, xí nghiệp, thường có một vùng phủ sóng Wi-Fi bao phủ một vùng địa lí lớn hơn phạm vi do một AP tạo ra. Do đó, chuyển vùng/bắt tay trở lên cần thiết. Trong thực tế, việc giới hạn phạm vi của mỗi AP để tăng tổng vùng phủ sóng và ngăn chặn các trạm liên kết với nó có tốc độ truyền dẫn thấp tại phía dìa của cell (và do đó làm giảm hiệu suất của tồn bộ cell). Chúng ta có thể xác định chuyển vùng khi có thể để tìm và liên kết với một AP khi bắt đầu có hiện tượng ngắt kết nối từ AP hiện tại.