CHƢƠNG 3 : PHƢƠNG PHÁP NGHIÊN CỨU
3.4. Nghiên cứu định lượng
3.4.3.2. Phân tích nhân tố khám phá EFA
Phân tích nhân tố EFA sẽ được sử dụng để gom các biến từ kết quả phân tích Cronbach Alpha để tạo ra các biến mới từ các biến đã cho phù hợp với mẫu xem xét. Các nhân tố được rút gọn này sẽ có ý nghĩa hơn nhưng vẫn chứa đựng hầu hết nội dung thông tin của tập biến quan sát ban đầu. Phân tích nhân tố khám phá được dùng để kiểm định giá trị khái niệm của thang đo.
Cách thực hiện và tiêu chí đánh giá trong phân tích nhân tố khám phá EFA:
Phương pháp: Đối với thang đơn hướng, sử dụng Principal components analysis đi cùng phép xoay Varimax. Thang đo chấp nhận được khi tổng phương sai trích được bằng hoặc lớn hơn 50% (Nguyễn Đình Thọ và Nguyễn Thị Mai Trang, 2007).
Tiêu chuẩn: Hệ số tải nhân tố phải lớn hơn hoặc bằng 0,5 để đảm bảo mức ý nghĩa thiết thực của EFA. Các mức giá trị của hệ số tải nhân tố: lớn hơn 0,3 là mức tối thiểu chấp nhận được; lớn hơn 0,4 là quan trọng; lớn hơn 0,5 là có ý nghĩa thực tiễn. Tiêu chuẩn chọn mức giá trị hệ số tải nhân tố: cỡ mẫu ít nhất là 350 thì có thể chọn hệ số tải nhân tố lớn hơn 0,3; nếu cỡ mẫu khoảng 100 thì nên chọn hệ số tải nhân tố lớn hơn 0,55; nếu cỡ mẫu khoảng 50 thì hệ số tải nhân tố phải lớn hơn 0,75 (Hair, 1998; dẫn theo Lê Ngọc Đức, 2008).
Từ cơ sở lý thuyết trên, luận văn sử dụng phân tích nhân tố EFA theo các bước sau: đối với các biến quan sát đo lường các khái niệm đều là các thang đo đơn hướng
nên sử dụng phương pháp trích nhân tố Principal Components với phép quay Varimax và điểm dừng khi trích các yếu tố có EigenValues > 1.
Sau đó tiến hành thực hiện kiểm định các yêu cầu liên quan gồm:
Kiểm định Barlett: các biến quan sát có tương quan với nhau trong tổng thể. Xem xét trị số KMO: nếu KMO trong khoảng từ 0,5 đến 1 thì phân tích nhân tố
là thích hợp với dữ liệu; ngược lại, KMO nhỏ hơn 0,5 thì phân tích nhân tố có khả năng khơng thích hợp với các dữ liệu (Hồng Trọng & Chu Nguyễn Mộng Ngọc, 2005).
Để phân tích EFA có giá trị thực tiễn; tiến hành loại các biến quan sát có hệ số tải nhân tố nhỏ hơn 0,5.
Trị số Eigenvalue phải lớn hơn 1.
Tổng phương sai trích phải lớn hơn hoặc bằng 50%.