GIAO THOA ÁNH SÁNG
SS.5 CÁC THÍ NGHIỆM GIAO THOA KHƠNG ĐỊNH XỨ.
1. Tính khơng kết hợp của hai nguồn sáng thơng thường.
Trong các nguồn sáng thường gặp như ngọn lửa, đèn điện, mặt trời… tâm phát sáng là các phân tử, nguyên tử, hoặc ion. Theo lý thuyết cổ điển, trong các tâm đĩ, bình thường điện tử ở tại các trạng thái dừng quanh hạt nhân. Khi nhân được năng lượng kích thích (nhiệt năng, điện năng…), các điện tử nhảy lên các trạng thái kích thích ứng với các mức năng
lượng cao hơn. Các trạng thái kích thích khơng bền, điện tử lại rơi trở về các quĩ đạo bền, kèm theo việc phát ra năng lượng dưới dạng sĩng điện từ.
Đĩ là quá trình phát sáng được mơ tả vắn tắt. Quá trình đĩ cĩ các đặc điểm như sau:
- Số tâm phát sáng rất lớn và độc lập với nhau.
- Q trình phát sáng cĩ tính ngẫu nhiên, các đồn sĩng phát đi từ các tâm riêng biệt, hay các đồn sĩng trước sau của cùng một tâm phát sáng cũng khơng cĩ mối liên hệ gì với nhau về pha ban đầu, phương giao động và tần số, biên độ (Tuy nhiên một loại tâm phát sáng trong cùng các điều kiện chỉ cĩ thể phát ra một bộ tần số đặc trưng nhất định).
- Các đồn sĩng trong các nguồn sáng thơng thường khơng kéo dài vơ tận trong khơng gian và thời gian (như các hàm số sĩng đơn sắc đã mơ tả). Nếu thời gian cho mỗi lần phát sáng vào cỡ 10-8 s thì độ dài của mỗi đồn sĩng vào cỡ mét.
Xét các đặc trưng trên chúng ta thấy các tâm phát sáng riêng biệt trong nguồn sáng khơng cĩ tính kết hợp, các phần riêng biệt của một nguồn sáng cũng khơng kết hợp – hai nguồn sáng độc lập khơng thể nào cĩ tính kết hợp. Vì vậy thơng thường chúng ta chỉ quan sát thấy sự cộng đơn giản của cường độ ánh sáng (I = I1 + I2) mà khơng quan sát thấy hiện tượng giao thoa.
Ngày nay, từ năm 1960 người ta đã chế tạo được các nguồn sáng riêng rẽ nhưng kết hợp,
đơn sắc và song song. Đĩ là nguồn laser (theo tiếng Anh light amplification by stimulated
emission of radiation). Chúng ta sẽ nghiên cứu cơ chế phát sáng trong nguồn laser ở phần sau của giáo trình.
Trong các phịng thí nghiệm người ta tạo ra hai nguồn kết hợp bằng cách dùng dụng cụ quang học tạo ra hai nguồn thứ cấp (hay dẫn xuất) kết hợp từ một nguồn sáng ban đầu. Ta sẽ lần lượt khảo sát một số thí nghiệm như vậy.
2. Thí nghiệm khe YOUNG (IĂNG).
Đây là thí nghiệm đầu tiên thực hiện được sự giao thoa ánh sáng. Trước nguồn sáng,
người ta đặt một màn chắn A cĩ đục một khe hẹp F để hạn chế kích thước nguồn sáng. Ánh sáng phát ra từ F, rọi sáng hai khe hẹp, song song, F1 và F2 ở trên màn màn B. Giả sử F1, F2 cách đều hai khe sáng F. Theo cách bố trí trên, ta đã dùng hai khe F1, F2 để tách một
đoạn sĩng (phát ra từ nguồn sáng) thành hai đồn giống hệt nhau. Như vậy F1 và F2 là hai
nguồn kết hợp.
Do hiện tượng nhiễu xạ (ta khảo sát trong chương sau) các khe F1 và F2 trở thành hai nguồn sáng dẫn xuất. Trong phần chồng chất của hai chùm tia phát xuất từ F1 và F2, ta cĩ hiện tượng giao thoa với hệ thống các vân thẳng, song song, sáng tối xen kẽ và cách đều nhau một khoảng là i theo cơng thức (4.5). Tại O ta cĩ vân sáng trung tâm.
Nếu trước một trong hai nguồn F1, F2, thí dụ trước F1, ta đặt một bản mỏng cĩ bề dày là e, chiết xuất n. Quang lộ đi từ F1 tới một điểm M trong trường giao thoa trên màn ảnh tăng lên một lượng là e (n – 1). Vân sáng trung tâm cũng như tất cả hệ vân sẽ dịch chuyển một
đoạn xác định. Từ đoạn dịch chuyển này ta cĩ thể suy ra bề dày e hoặc chiết suất n của bản.
Hai gương phẳng G1 và G2 hợp với nhau gĩcĠ bé. Giao tuyến của hai gương cắt mặt phẳng hình vẽ tại O (H.13). nguồn sáng điểm S đặt cách giao tuyến của hai gương một khoảng r. Mỗi một đồn sĩng xuất phát từ S đều cùng đến được hai gương. Như vậy hai
chùm tia phản xạ từ hai gương thỏa mãn điều kiện kết hợp. Nhờ độ nghiêngĠ giữa hai
gương mà 2 chùm tia phản xạ cĩ phần chồng chất lên nhau, cho hiện tượng giao thoa.
Để nghiên cứu định lượng hiện tượng chúng ta phân tích như sau. S1 và S2 là hai ảnh ảo
của S qua hai gương G1 và G2. Cĩ thể xem các chùm tia phản xạ từ gương như xuất phát từ 2 nguồn kết hợp S1 và S2. Hai nguồn này, cùng với S, nằm trên đường trịn tâm O bán kính r. Dễ dàng chứng minh rằng gĩc S1OS2= 2α . Như vậy khoảng cách giữa hai nguồn kết hợp:
λ = 2r α
Tương tự như trường hợp giao thoa của hai nguồn sáng điểm, màn quan sát P được đặt vuơng gĩc với đường trung trực của đoạn S1S2. Điểm O' chính là vị trí vân sáng trung tâm. Các cơng thức từ (4.1) đến (4.5) đều được áp dụng đúng nếu thay (= 2rĠ và D=D’+r.
Để cho cường độ sáng của các vân đủ lớn, dễ quan sát, nguồn sáng S được bố trí dưới
dạng khe hẹp, song song với giao tuyến của hai gương.
So với trường hợp hai khe lăng, giao thoa với hai gương Fresnel tránh được hiện tượng nhiễu xạ.
4. Hai bán thấu kính Billet.
Một thấu kính hội tụ được cưa đơi theo đường kính (mặt phẳng đối xứng). Hai nữa L1 và L2 được tách rời nhau ra, cho ta hai ảnh riêng biệt S1 và S2 của cùng một nguồn sáng S
(H.14). S1 và S2 là hai nguồn kết hợp. Hiện tượng giao thoa được quan sát trên màn P. Biết
được khoảng cách ( giữa hai nguồn kết hợp, cũng như khoảng cách D từ S1 và S2 đến màn
quan sát chúng ta dễ dàng xác định kích thước của hệ vân giao thoa.
Cách bố trí này cho ta hai nguồn thật, hồn tồn cách rời nhau. Thành thử ta cĩ thể dễ dàng thay đổi quang lộ của một trong hai chùm tia, bằng cách đặt bản mỏng T cĩ bề dày e và chiết suất n trước nguồn sáng S1 chẳng hạn (xem phần khe lăng).
Chùm tia sáng xuất phát từ S được tách làm hai phần: Phần đến trực tiếp trên màn quan sát P, phần cịn lại đến P sau khi phản xạ từ gương phẳng G (H.15). Chùm tia phản xạ như xuất phát từ ảnh ảo S’. S và S’ là nguồn kết hợp S được đặt gần mặt phẳng của gương, sao cho khoảng cách l = ss’ là bé.
O là giao tuyến giữa đường trung trực của đoạn ss’ và màn quan sát P. Ở O lẽ ra ta quan sát thấy vân sáng vì quang lộ SO=S’O, thì lại thấy vân tối. Để giải thích điều ấy, chúng ta thừa nhận rằng, khi phản xạ trên gương G, quang lộ thay đổi đi một nữa bước sĩng. Hay nĩi rằng khi phản xạ trên gương, pha của chấn động đã thay đổi đi l . Hiện tượng đổi pha này xảy ra, khi ánh sáng phản xạ trên mơi trường chiết quang hơn (chiết suất lớn hơn).