Bảng 2.3 Các tham số linh kiện sử dụng trong mạch TKĐ. Linh kiện Giá trị (sai số) Linh kiện Giá trị (sai số)
R1 49,9Ω (1%) R8 330 Ω (1%) R2 49,9Ω (1%) R9 49,9Ω (1%) R3 1,5kΩ (1%) R10 720 Ω (1%) R4 49,9Ω (1%) C1 10 pF (5%) R5 470 Ω (1%) C2 10 pF (5%) R6 470 Ω (1%) C3 10 pF (5%) R7 1,0kΩ (1%) C4 220 pF (5%)
2.2 Xây dựng hệ đo nơtron sử dụng đetectơ EJ-301
2.2.1 Xây dựng phần cứng hệ đo
Phần cứng hệ đo nơtron và gamma sử dụng đetectơ nhấp nháy được thiết kế dựa trên mơ hình của hệ ghi đo bức xạ bằng kỹ thuật số. Cấu hình hệ đo được trình bày trên hình 2.9; gồm ba phần chính: đetectơ EJ-301, bộ số hóa tốc độ cao và hệ xử lý xung và lưu trữ. EJ301 PMT Preamp HV power supply Detector EJ-301 Computer cable 50 Ohm DC Power Supply Fast ADC DRS4 Evaluation Board FPGA USB
Hình 2.9 Sơ đồ cấu trúc phần cứng hệ đo nơtron bằng kỹ thuật số sử dụng đetectơ EJ-301.
1) Đetectơ
Đetectơ EJ-301 đã được thiết kế để đo nơtron và gamma với các tham số chính khảo sát được trên nguồn gamma như sau:
Vùng biên độ xung ra tuyến tính: 0 ÷ 2700 mV; Thời gian tăng của xung: ~12,4 ns;
Thời gian giảm của xung: ~31 ns;
Độ nhạy của đetectơ ở giá trị cao áp 1200V: 190,3mV MeVee/ .
Các tham số của xung ra từ đetectơ đã được thiết kế để phù hợp trong ghép nối trực tiếp đến các bộ số hóa tốc độ cao. Hình 2.10 trình bày một xung gamma đặc trưng từ đetectơ EJ-301 được lấy mẫu trên DPO7254C.
Hình 2.10 Dạng xung gamma từ đetectơ EJ-301 được lấy mẫu trên DPO7254C.
2) Bộ số hóa
a) Yêu cầu trong hệ đo nơtron-gamma
Bộ số hóa có nhiệm vụ số hóa các xung tương tự thành dạng dữ liệu số, sao cho khi dựng lại xung dưới dạng số thì các đặc trưng cần thiết của xung vẫn được bảo toàn. Do các đặc trưng về thời gian của xung rất ngắn, mặt trước của xung kéo dài khoảng 20 ns, trong khi phân rã của các thành phần chậm của xung kéo dài
khoảng 300 ns. Do đó, khoảng thời gian cần quan tâm cho mỗi xung sẽ kéo dài từ 400 ÷ 600 ns. Bên cạnh đó, các đặc trưng hình dạng khác nhau của xung
nơtron/gamma rất nhỏ nằm ở phần đi xung, nên u cầu về tốc độ số hóa và độ phân giải biên độ tương đối cao. Các khảo sát đã thực hiện trên DPO 7254C cho thấy khi tốc độ lấy mẫu nhỏ hơn 500 MSPS, khả năng phân biệt dạng xung
nơtron/gamma kém hiệu quả. Điều này cũng đã được khẳng định trong các nghiên cứu phân biệt dạng xung nơtron/gamma bằng kỹ thuật số của các tác giả khác [21,56,67]. Do đó, để hiệu quả phân biệt nơtron và gamma tốt thì các bộ số hóa trong hệ đo cần có tần số lấy mẫu lớn hơn 500 MSPS. Kết quả này là phù hợp với các tài liệu tham khảo [6,8,10], trong đó hiệu quả phân biệt dạng xung nơtron/gamma phụ thuộc vào độ phân giải của bộ số hóa.
Cấu trúc bộ số hóa được thiết kế gồm hai phần: Bộ biến đổi ADC tốc độ cao và bản mạch điều khiển, xử lý, lưu trữ/ truyền số liệu số hóa. Các bộ ADC với cấu trúc đường ống đã cho phép biến đổi sang số lên đến tốc độ trên 500 MSPS. Các bộ ADC này có thể ghép với FPGA với mục đích điều khiển ADC và lưu trữ / truyền số liệu. Việc kết nối với FPGA thường được thực hiện qua chuẩn LVDS (Low- Voltage Differential Signaling) [68]. Tuy nhiên, việc kết nối ADC tốc độ cao với FPGA thông qua cáp LVDS thường gặp một số vấn đề về nhiễu trong quá trình truyền/nhận. Do đó, ADC tốc độ cao kết hợp với FPGA trên một bản mạch duy nhất thường được sử dụng trong xây dựng các hệ đo bức xạ bằng kỹ thuật số [69,70]. Các module dạng này như: XMC-1131 của công ty Flexcom, gồm một ADC 250 MSPS – 14 bit kết hợp với FPGA Xilinx Virtex-5; XMC-1151 sử dụng ADC 1,8GSPS-12 bit kết hợp với Xilinx® Virtex®-6 SX315T; ADX2-EVM-800/14 của Texas Instruments sử dụng 2 ADC 400MSPS-14 bit kết hợp với FPGA Xilinx Virtex-5. Sử dụng các khối trên có ưu điểm là tốc độ lấy mẫu nhanh, liên tục, đồng thời có thể sử dụng FPGA trên bản mạch để xây dựng hệ đo hoàn chỉnh [71,72]. Tuy nhiên, giá của các thiết bị này là một trở ngại trong việc nghiên cứu và triển khai rộng rãi các hệ đo.
Gần đây, một phương pháp tiếp cận mới cho q trình chuyển đổi từ tín hiệu tương tự thành số là sử dụng mảng tụ chuyển mạch (SCA: switched-capacitor arrays) kết hợp với ADC kiểu đường ống. Các bản mạch số hóa tốc độ cao sử dụng SCA, ADC và FPGA đã được viện nghiên cứu PSI (Paul Scherrer Institute) phát triển và DRSx là một giải pháp thay thế cho các ADC nhanh trực tiếp đắt tiền trong thiết kế và xây dựng hệ đo bức xạ [73,74]. Chi phí để xây dựng 8 kênh ADC với tốc độ 5 GSPS ở mức dưới 2000USD, trong khi sử dụng các mạch ADC nhanh trực tiếp kết hợp với FPGA có tốc độ tương đương có chi phí trên 10.000 USD. Bản mạch DRS4 sử dụng phương pháp lấy mẫu và lưu trữ tín hiệu ở tốc độ cao vào mảng tụ, sau đó sử dụng ADC tốc độ thấp hơn để số hóa dữ liệu từ mảng tụ [73]. Do đó, phương pháp này phù hợp với các hệ đo nơtron cần xử lý các xung ngắn đòi hỏi tốc
xung từ đetectơ EJ-301, các xung này có chiều dài ngắn (~600ns) và cần tốc độ số hóa cao.
b) Bản mạch DRS4
Q trình số hóa của bản mạch DRS4 cơ bản dựa trên bộ lấy và giữ mẫu tương tự DRS4 kết hợp với ADC 9245 - 14 bit và FPGA (Spartan®-3A). Hình 2.11 mơ tả bản mạch DRS4 V5.1 với 4 kênh vào. Sơ đồ khối của bản mạch DRS4 được mơ tả trên hình 2.12. Các tham số chính là:
Đầu vào: bốn đầu vào tương tự hoạt động độc lập trong vùng điện áp 0 ÷ 1,0V hoặc -0,5 ÷ 0,5V. Trong đó điện áp giới hạn đầu vào lớn nhất là 2,5V, trở kháng các kênh vào là 50 và băng thông 700MHz (-3dB).
Biến đổi ADC: độ phân giải cho mỗi kênh vào là 14 bit (16384 kênh) tương đương 0,061mV/ kênh.
Tần số lấy mẫu: cho phép cài đặt trong vùng từ 700 MSPS đến 5GSPS. Chu kỳ lấy mẫu nhỏ nhất 0,2ns.
Kích thước mẫu: độ dài mỗi xung được giữ trên DRS4 có thể thiết lập 1024 hoặc 2048 mẫu.
Khả năng lập trình: FPGA Spartan®-3A với mã nguồn mở cho phép tái lập trình để thu nhận và xử lý xung.
Giao tiếp: được kết nối với máy tính qua cổng USB 2.0 để điều khiển và nhận số liệu đo.