Nguyên lý hoạt động của BMRA như sau: từ động cơ bên ngồi thơng qua bộ truyền bánh răng côn sẽ dẫn động hai trục (trục 1 và 2) quay cùng tốc độ nhưng ngược chiều, do hai đĩa (8, 9) được lắp cố định trên hai trục nên hai đĩa này cũng quay cùng
32
tốc độ nhưng ngược chiều. Các cuộn dây được bố trí ở hai bên mặt đầu của BMRA, MRF được điền đầy giữa khe hở của các đĩa và thân BMRA.
Mạch từ của BMRA được xác định bởi Hình 2.9b, với mơ hình đơn giản nên tác giả chia thành 16 phần tử, trong đó 11, 13 và 15 là các phần tử MRF và các phần tử khác là các phần tử vật liệu từ tính. Theo đó từ thơng được chia thành ba nhánh, lượng từ thông nhánh II được dự kiến là khơng đáng kể vì nó đi qua hầu hết phần tử MRF, có độ từ thẩm cao và khoảng cách dài hơn nhiều so với các phần tử khác. Do đó, lượng từ thơng nhánh II được xem xét sẽ khơng ảnh hưởng đến kết quả tính tốn. Từ Hình 2.9b thì phương trình (2-27) được viết lại như sau:
= B1A1 = B2A2 = B3A3 = B4A4 = B12A12 = B14A14 = B16A16 = B15A15 II = B4IA4I = B5A5 = B6A6 = B9A9 = B10A10
I = B11A11 = B12III A12III =
B4I A4I = B7A7 = B13A13 = B12IA12I
Với Φ = ΦI + ΦIII (2-37)
Phương trình (2-26) được viết lại như sau:
H1l1 + H2l2 + H3l3 + H4l4 + H4IIIl4III + H5l5 + H6l6 + H9l9 + H10l10 + H11l11 +H12IIIl12III + H12l12 + H14l14 + H16l16 + H15l15 = Nc.I H1l1 + H2l2 + H3l3 + H4l4 + H4Il4I + H7l7 + H13l13 + H12Il12I + H12l12 + H14l14 +H16l16 + H15l15 = Nc.I Trong đó: 𝑙1 =𝑤𝑐 2; 𝑙2 =𝑡𝑘−𝑤𝑐 2 +𝑅𝑐𝑖−𝑅𝑖 2 ; 𝑙3 =𝑅𝑐𝑜−𝑅𝑐𝑖 2 ; 𝑙4𝐼𝐼𝐼 =𝑡𝑘−𝑤𝑐 2 ; 𝑙4𝐼 =𝑅𝑑−𝑅𝑐𝑜 2 ; 𝑙4 =𝑅𝑑−𝑅𝑐𝑜 2 𝑙5 =𝑑0 2; 𝑙6 =𝑅−𝑅𝑑−𝑑0 2 +𝑡𝑘−𝑤𝑐 2 ; 𝑙7 = 𝑙8 = 𝑙9 = 𝑤𝑐; 𝑙10=𝑑+𝑑𝑏 2 +𝑅−𝑅𝑑−𝑑0 2 ; 𝑙11 = 𝑑0; 𝑙12𝐼𝐼𝐼 =𝑏𝑑 2; 𝑙12𝐼 =𝑅𝑑−𝑅𝑐𝑜 2 𝑙12=𝑅𝑑−𝑅𝑐𝑜 2 ; 𝑙13 = 𝑑; 𝑙14 = ℎ𝑐; 𝑙15 = 𝑑; 𝑙16 =𝑅𝑐𝑖−𝑅𝑖 2 +𝑑𝑏 2 𝐴𝑖𝑛1 = 2𝜋𝑅𝑖(𝑅𝑐𝑖− 𝑅𝑖) 𝐴𝑖𝑛1 = 𝐴𝑜𝑢𝑡1 = 𝐴𝑖𝑛2 𝐴𝑜𝑢𝑡2 = 𝐴𝑖𝑛3 = 𝐴𝑜𝑢𝑡3 = 𝐴𝑖𝑛4 = 2𝜋. 𝑡𝑘(𝑅𝑐𝑖− 𝑅𝑖)
33 𝐴𝑜𝑢𝑡4𝐼𝐼𝐼 = 𝐴𝑖𝑛7 = 𝐴𝑜𝑢𝑡7 = 𝐴𝑖𝑛13 = 𝐴𝑜𝑢𝑡13 = 𝐴𝑖𝑛12𝐼𝐼𝐼 = 𝜋(𝑅𝑑2− 𝑅𝑐𝑜2 ) 𝐴𝑜𝑢𝑡4 = 𝐴𝑖𝑛5 = 2𝜋. 𝑡𝑘𝑅𝑑 𝐴𝑜𝑢𝑡5𝐼 = 𝐴𝑖𝑛6 = 2𝜋. (𝑅𝑑+ 𝑑0) 𝐴𝑜𝑢𝑡5𝐼𝐼 = 𝐴𝑖𝑛8 = 𝐴𝑜𝑢𝑡8 = 𝐴𝑖𝑛11𝐼𝐼 𝐴𝑜𝑢𝑡6 = 𝐴𝑖𝑛9 = 𝐴𝑜𝑢𝑡9 = 𝐴𝑖𝑛10 = 𝜋𝑅2− 𝜋. (𝑅𝑑+ 𝑑0)2 𝐴𝑜𝑢𝑡5𝐼𝐼 = 𝐴𝑖𝑛8 = 𝐴𝑜𝑢𝑡8 = 𝜋(𝑅𝑑− 𝑑0)2− 𝜋𝑅𝑑2 𝐴𝑜𝑢𝑡10𝐼 = 𝐴𝑖𝑛11 = 𝐴𝑜𝑢𝑡11 = 𝐴𝑖𝑛12𝐼 = 𝜋(𝑅𝑑+ 𝑑0)2− 𝜋𝑅𝑑2 𝐴𝑜𝑢𝑡15 = 𝐴𝑖𝑛1 𝐴𝑜𝑢𝑡12 = 𝐴𝑖𝑛14 = 𝜋𝑅𝑐𝑜2 𝐴𝑜𝑢𝑡14 = 𝐴𝑖𝑛16 = 𝜋. 𝑅𝑐𝑖2 𝐴𝑜𝑢𝑡16 = 𝐴𝑖𝑛15=𝜋. (𝑅𝑐𝑖2 − 𝑅𝑖2)
Ưu điểm của phương pháp giải tích là đơn giản vì dùng cơng thức tính tốn sẽ cho kết quả chính xác nhưng nhược điểm của phương pháp này là khi các mặt cắt khác nhau hoặc vật liệu khác nhau thì phải chia nhỏ nên tính tốn khó khăn và độ chính xác khơng cao.
2.6.1 Phương pháp phần tử hữu hạn
Đối với bài toán mạch từ giải bằng phương pháp giải tích, ta phải chia nhỏ mạch từ thành các phần tương ứng có diện tích Ak và chiều dài tương ứng lk. Để tăng độ chính xác thì số lượng mạch từ cần chia nhỏ nhiều hơn gây khó khăn khi sử dụng phương pháp giải tích. Vì vậy phương pháp phần tử hữu hạn tích hợp trong phần mềm ANSYS với mơ-đun có thể giải điện từ trường sẽ giúp ta xác định được mật độ từ thông đi qua khe lưu chất. Khi sử dụng phương pháp này, để kiểm soát tốt việc chia lưới theo mong muốn, tác giả dùng phần tử tứ giác cho tất cả các phần tử (phần tử đối xứng trục PLANE 13) của phần mềm ANSYS. Muốn vậy, các diện tích xây dựng trong mơ hình đều là tứ giác và các cạnh đối diện trong tứ giác phải được chia có số phần tử bằng nhau. Khi chia lưới càng nhỏ thì kết quả càng chính xác, tuy nhiên thời gian tính tốn sẽ lớn. Vì vậy việc xác định số lượng phần tử trên mỗi đoạn để đảm bảo được tính chính xác và hiệu quả của việc mô phỏng cũng là yêu cầu trong mô phỏng cơ cấu sử dụng MRF.
34
2.7 Cơ sở phương pháp tối ưu hố
Tối ưu hóa là bài tốn quan trọng trong các lĩnh vực như kỹ thuật điện, cơ khí, dân dụng, hóa học và xây dựng để nâng cao hiệu quả, giảm chi phí của kết cấu… Một số cách tiếp cận chung để tối ưu hóa như sau:
- Phương pháp phân tích; - Phương pháp đồ họa; - Phương pháp số;
- Phương pháp thực nghiệm.
2.7.1 Phân loại các bài toán tối ưu
- Theo hàm mục tiêu và hàm ràng buộc.
• Tối ưu hóa tuyến tính: các hàm đều là hàm tuyến tính.
• Tối ưu hóa phi tuyến: có ít nhất một hàm là phi tuyến. - Theo số biến thiết kế tối ưu:
• Tối ưu hóa hàm một biến: chỉ có một biến thiết kế.
• Tối ưu hóa hàm nhiều biến: có nhiều biến thiết kế. - Theo tính liên tục của biến thiết kế:
• Biến thiết kế liên tục: nhiệt độ, vận tốc…
• Biến thiết kế rời rạc: diện tích, mơ-men, lực... - Theo tính tường minh của hàm ràng buộc:
• Hàm ràng buộc tường minh: lập được phương trình của hàm ràng buộc với các biến đầu vào.
• Hàm ràng buộc khơng tường minh: không lập được hàm ràng buộc tường minh với các biến đầu vào.
2.7.2 Các phương pháp tối ưu thơng dụng
Hiện nay có rất nhiều thuật tốn tối ưu được áp dụng, tuỳ vào điều kiện ban đầu, hàm mục tiêu và yêu cầu đáp ứng của mục đích tối ưu hố thì sẽ có một phương pháp tối ưu thích hợp nhất. Điều này có nghĩa rằng một phương pháp tối ưu có thể thích hợp cho trường hợp này nhưng khơng thích hợp cho trường hợp khác. Hình 2.10 cho thấy sự phát triển các phương pháp tối ưu có hai nhánh rõ ràng đó là tối ưu cục bộ và
35
tối ưu tồn cục. Phương pháp nào cũng có lợi thế khác nhau tùy vào điều kiện của bài toán đặt ra