KẾT LUẬN
Sau khi khảo sát ảnh hƣởng của một số yếu tố nhƣ tỷ lệ, nồng độ tiền chất, nhiệt độ và thời gian nung, đã lựa chọn đƣợc các điều kiện thích hợp cho quá trình chế tạo nano ZnO bằng phƣơng pháp oxalat nhƣ sau:
- Tỷ lệ mol Zn2+/C2O42-: 0,75; - Nồng độ tiền chất Zn2+: 0,05M; - Thời gian nung: 3h;
- Nhiệt độ nung: 500oC.
Với các điều kiện nhƣ trên, vật liệu nano ZnO chế tạo đƣợc có cấu trúc lục giác dạng wurtzite thuộc nhóm khơng gian P63mc, với kích thƣớc hạt chủ yếu từ 40 – 60 nm.
Cố định thành công nano ZnO trên bentonite chứng mịnh sự tồn tại của ZnO/bentonit hiệu quả gắn đạt 100% ở tỷ lệ 2% Zn
Khảo sát thành cơng tính kháng nấm Phytophthora của vật liệu đạt trên 80% ở nồng độ ZnO/Bentonit 1000ppm tính theo kẽm.
TÀI LIỆU THAM KHẢO
Tiếng Việt
[1] Trần Văn Hòa (2001), 101 câu hỏi thường gặp trong sản xuất nông nghiệp,
NXB trẻ, Hồ Chí Minh.
Tiếng Anh
[2] H. C. N. R. Frenkel A. I. (2001), “A View from the Inside: Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles,” Journal of Physical
Chemistry B, 105, pp. 12689-12703.
[3] G. D. A.D Pomogailo (2014), “Nanostructured Materials Preparation via Condensation Ways, Chapter 2 Reduction of Metal Ions in Polymer Matrices as a Condensation Method of Nanocomposite Synthesis,” Springer Science+Business Media Dordrecht, pp. DOI 10, 1007/978-90-481-2567-8_2.
[4] H. H. R. A. A. Pirzad (2012), “Effect of nano iron foliar application on qualitative and quantitative characteristics of cowpea, under end season drought stress,” Int. Res. J. Applied and Basic Science, vol. 3(8), pp. 1709- 1717.
[5] J. H. Q. C. H. Zhu (2008), “ Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumkin plant,” J. Envir. Monitoring
10, pp. 713-717.
[6] A. G. P. H. S. e. a. A. Berahmand (2012), “Effects of silver nanoparticles and magnetic field on growth of fodder maize,” Biol. Trace Elem. Res, pp. 149: 419-424.
[7] S. L. M. A. (2006), “Study Of Structural, Electrical, Optical And Magnetic Properties Of ZnO Based Films Produced By Megnetron Sputtering,”
Advanced Materials Research, vol. 97 (101), pp. 1198-1202.
[8] Y. S. Kumar V (2009), “Plant-mediated synthesis of silver and gold nanoparticles and their applications,” J. Chem. Technol. Biotechnol, vol. 84, p. 151–157.
[9] K. S. K. H. C. S. Park HJ (2006), “A new composition of nanosized silica– silver for control of various plant diseases,” Plant Pathol. Journal, pp. 22. 25- 34.
[10] S. M. &. T. A (2010), “Principles of Nanosciences and Nanotechnology,”
Naroosa Publishing House, New Delhi.
[11] D. H. K. C. &. K. K. A. Aruoja V (2009), “Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalga Pseudokirchneriella subcapitata,” Sci. Total Environmen, vol. 407, pp. 1461-1468.
[12] S. B. &. S. V. Barik TK (2008), “Nanosilica - from medicine to pest control,”
Parasitolology Research, vol. 103, p. 253–258.
[13] Y. L. A. M. a. M. L. L. He (2011), “Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum,” Microbiol. Res, pp. 166, 207.
[14] B. R. K. T. R. a. A. C. M. N. Jones (2008), “Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms,” FEMS Microbiol, pp. 279, 71.
[15] M. S. Q. S. S. D. J. A. J. M. A. A.-K. H.-S. S. R. Wahab (2014), “ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity,” Colloids Surf, vol. B117, pp. 267- 276.
Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or ethanol application,” Postharvest Biol Technol, vol. 33, pp. 141 - 51.
[17] Y. H. K. T. Elad Y (1992), “Multiple fungicide resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates ofBotrytis cinereain Israel,”
Plant Pathol, pp. 41:41 - 6.
[18] A. E. N. L. M. D. V. T. X. P. S. F. K. V. C. a. M. T. E. M. Hoek (2009), “Understanding biophysicochemical interactions at the nano-bio interface,”
Nat. Mater, vol. 8, p. 543.
[19] S. D. J. A.-S. M. M. B. J. I. B. P. S. R. Vojislav Stanić (2010), “Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders,” Applied Surface Science, vol. 256, pp. 6083- 6089.
[20] B. R. B. N. D. S. B. M. F. F. T. Ferrari-Iliou R (2006), “Oxicological impact studies based on Escherichia colibacteria in ultrafine ZnO nanoparticles colloidal medium,” Nano Lett, vol. 6(4), p. 866 – 70.
[21] R. K. B. J. W. D. H. C. P. A. Feris K (2007), “Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems,” Appl Phys Lett, pp. 90(21):213902 - 5.
[22] A. R. I. S. a. S. a. D. Goswami (2010), “Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens,” Thin Solid Films, vol. 519, pp. 1252 - 1257.
[23] A. R. K. J.-Y. L. B. R. J. H. S. K. a. J. Y. L. N. W. Jang (2011), “Effect of Zn2+ source concentration on hydrothermally grown ZnO nanorods,” Journal of Nanoscience and Nanotechnology, Vols. 11, no. 7, p. 6395–6399.
[24] S. M. B. a. F. T. M. A. Moghri Moazzen (2013), “Change in the morphology of ZnO nanoparticles upon changing the reactant concentration,” Applied Nanoscience, Vols. 3, no. 4, p. 295–302.
[25] J. S.-L. J. O. A. W. A. L. ´. A. K.-R. T. Jesionowski (2010), “Modification of textile products with nanosized zinc oxide and ZnO-SiO2 oxide composite,”
Przemysl Chemiczny, Vols. 89, no. 12, p. 164.
[26] M. K. S. K. Alireza KHATAEE (2016), “Preparation and characterization of ZnO/MMT nanocomposite for photocatalytic,” Turk J Chem 40, pp. 546 -564. [27] M. A. F. S. H. N. A. A. A. Muhammad Arshad (2016), “Antibacterial and
Antifungal Activities of Zinc-Silicon Oxides Nanocomposite,” Lett Health Biol
Sci, vol. 1(1), pp. 1- 5.
[28] S. S. R. M. S. O. M. N. B. M. Sarah C. Motshekga (2013), “Microwave- assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay,” Hazard Mater, vol. 15, p. 439−446. [29] S. C. P. a. D. E. M. Gráinne M. Duffy (2007), “The effect of the rate of
precursor production on the purity and aggregation morphology of nanoparticulate zinc oxide,” J. Mater. Chem, vol. 17, p. 181–184.
[30] P. G. G. W. R. D. D. P. a. X. W. Xiaolu Liang (2012), “Dilute magnetic semiconductor Cu2MnSnS4 nanocrystals with a novel zincblende and wurtzite structure,” Cite this: RSC Advances, vol. 2, p. 5044–5046.
[31] Z. H. W. H.-Q. R. F. C. X.-H. Z. H.-H. Z. Y.-H. K. J.-Y. Wang Xiao-Dan (2015), “Cubic ZnO films obtained at low pressure by molecular beam epitaxy,” Chinese Physics B, vol. 24(9): 097106.
[32] M. A. D. S. B. J. Orolínová Zuzana (2012), “EFFECT OF THERMAL TREATMENT ON THE BENTONITE PROPERTIES,” Original scientific
paper DOI: 10.5825/afts.2012.0407.049O, Vols. ,7(1), pp. 49-56.
[33] T. P. Y. S. e. a. P. Sudhakar, “Effects of ZnO nanoparticles on the germination, growth and yield of peanut,” J. Plant Nutrition, vol. 35:6, pp. 905-927, 2012. [34] D. a. K. M. Pramod, “Effect of nano-ZnO particle suspension on growth of
Vigna radiata and Cicer arietinum seedling using plant agar method,” J. Nanotechnology, vol. doi: 10, p. 1155/2011/696535, 2011.
[35] T. J. a. A. Laurentowska, “ZnO-SiO2 oxide composites synthesis during precipitation from emulsion system,” Physicochemical Problems of Mineral Processing, Vols. 48, no. 1, p. 63–76, 2012.
[36] R. W. A. M. S.-I. Y. Y.-S. K. H.-S. Shin, ““Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route,” Appl. Microbiol. Biotechnol, vol. 87(5), p. 1917–1925, 2010.
[37] R. Gross, “Novel ferromagnetic semiconductors: Preparation and characterization of bulk – and thin film samples of Cu – doped ZnO, Technische universitat, Munchen,” 2007.
[38] N. S. a. S. A. G. Bhumi, “Effect of NPs on seed germination and seedling growth of Boswellia ovalifoliolata,” Nano Vision, Vols. 2 (1,2,3), pp. 61-68, 2012.
[39] S. C. P. J. M. K. P. O. a. R. R. Declan E. McCormack, “The effect of processing conditions on varistors prepared from nanocrystalline ZnO,” Centre