Trong thực tế, phổ hồng ngoại thường được ghi với trục tung biểu diễn T%, trục hồnh biểu diễn số sóng với trị số giảm dần (4000 – 400 cm-1).
FTIR-6300 là thiết bị quang phổ áp dụng để đo phổ hồng ngoại bởi sự biến đổi chuỗi Fourier nhờ một giao thoa kế Michealson. Giao thoa kế Michealson gồm gương phẳng di động, một gương cố định và một tấm kính phân tách ánh sáng. Ánh sáng từ nguồn sáng chiếu vào tấm kính phân tách được tách ra thành hai phần bằng nhau, một phần đi qua gương di động và một phần đi qua gương cố định sau đó phản xạ trở lại qua kính phân tách, một nửa trở về nguồn, còn một nửa chiếu qua mẫu đi đến detectơ. Do có sự trễ giữa đoạn đường đi của ánh sáng đến gương di động và gương cố định nên ánh sáng sau khi đi qua giao thoa kế biến đổi từ tần số cao xuống tần số thấp. Sau đó ánh sáng đi qua mẫu bị hấp thụ một phần rồi đi đến detectơ, phổ kế sẽ tổng hợp và số hóa từ bộ giao thoa kế Michealson theo biến đổi Fourier nhận được một phổ hồng ngoại với độ phân giải và tỉ số tín hiệu/nhiễu (S/N) cao.
2.2.6. PHỔ RAMAN
Tán xạ Raman là một quá trình tán xạ khơng đàn hồi giữa photon (lượng tử ánh sáng) và một lượng tử dao động của vật chất hay mạng tinh thể. Sau quá trình va chạm, năng lượng của photon giảm đi (hoặc tăng lên) một lượng bằng năng lượng giữa hai mức dao động của nguyên tử (hoặc mạng tinh thể) cùng với sự tạo thành (hoặc hủy) một hạt lượng tử dao động. Dựa vào phổ năng lượng thu được, ta có thể có những thơng tin về mức năng lượng dao động của nguyên tử, phân tử hay mạng tinh thể. Giống như các mức năng lượng của electron trong nguyên tử, các mức năng lượng dao động này cũng là đại lượng đặc trưng, có thể dùng để phân biệt nguyên tử này với ngun tử khác. Chính vì thế, tính ứng dụng của phổ Raman là rất lớn.
Tuy nhiên, so với các quá trình tán xạ đàn hồi (năng lượng của photon khơng đổi) thì xác suất xảy ra tán xạ Raman là rất nhỏ. Để quan sát được vạch Raman, ta phải: tăng cường độ của vạch Raman và tách vạch Raman khỏi vạch chính. Việc tách phổ có thể thực hiện khá đơn giản bằng một kính lọc, hay phức tạp hơn một chút là phép biến đổi Fourier. Hệ biến đổi Fourier là một hệ phổ biến trong ngành quang học và quang phổ, người ta dùng một hệ giao thoa kế Michealson với một gương có thể dịch chuyển. Độ dịch chuyển của gương có thể điều khiển chính xác nhờ hệ vân giao thoa của một laser có bước sóng cho trước. Dựa vào độ dịch của gương, ta có thể có hàm Fourier của nguồn sáng cần nghiên cứu.
Để có được cường độ vạch Raman lớn, cách đơn giản nhất là chiếu chùm sáng tới với cường độ lớn. Ví dụ dùng Laser để chiếu, nhưng cách này cũng khơng hiệu quả lắm. Hiện nay có 2 phương pháp cộng hưởng thường được áp dụng trong tán xạ
Raman để khuyếch đại vạch Raman lên là phương pháp CARS (viết tắt của Coherent Antistokes Raman Scattering) và phương pháp SERS (Surface Enhanced Raman Scattering), tăng cường độ vạch Raman bằng plasmon bề mặt (surface plasmon).
Trong khóa luận này, mẫu bán dẫn PbS:Mn được đo phổ tán xạ Raman bởi hệ máy sử dụng kỹ thuật quang phổ micro-Raman. Kỹ thuật khơng phá mẫu này có thể ứng dụng cho việc phân tích các mẫu ở bất cứ trạng thái nào: khí, lỏng, dung dịch, rắn.
Một quang phổ kế Micro-Raman được tạo thành bằng cách lắp đặt hệ kính hiển vi quang học với một quang phổ kế Raman. Độ khuếch đại của hệ không cần lớn hơn 100 lần khi độ phân giải cỡ 1m, và khi độ dài sóng của laser kích thích nằm trong
vùng 0,1 – 1,2 μm (100 – 1200 nm). Từ đó, bất cứ phần tử nào có kích thước lớn hơn 1μm trong mẫu đều có thể được kích thích bởi hệ Micro - Raman và do đó có thể ghi được phổ đặc trưng của nó mà khơng bị ảnh hưởng bởi mơi trường xung quanh và giống y như phổ của mẫu thuần khiết có kích thước lớn trong phổ Raman truyền thống.
Hình 2.13a biểu diễn sơ đồ quang học của quang phổ kế Micro - Raman Spex Micramate. Trong trường hợp này, người ta thường sử dụng detector là ống nhân quang được làm lạnh và hệ thống đếm photon để có được độ nhạy cao và độ ồn thấp.
Hình 2.13a : Sơ đồ quang học của quang phổ kế micro -Raman Spex Micramate
Hình 2.13b. Hệ đo phổ Raman đặt tại trường ĐH Khoa Học Tự Nhiên- ĐH Quốc Gia Hà Nội.
2.2.7. PHỔ HẤP THỤ QUANG HỌC UV – VIS
Hệ số hấp thụ đặc trưng cho môi trường hấp thụ và phụ thuộc vào bước sóng của ánh sáng theo biểu thức sau [3]:
2 0(1 ) 1 ln T I R d I (2.3) hệ số hấp thụ d là chiều dày mẫu
I0 là cường độ chùm sáng tới,
IT là cường độ chùm sáng truyền qua R hệ số phản xạ. W1: Đèn halogen D2: Đèn đơteri G: Cách tử PM:Ống nhân quang điện
S1, S2: Khe vào, ra; W: Cửa sổ thạch anh; F: Kính lọc
M1-10:Gương CP: Ngắt tia.