Quá trình chuyển hóa Cr(VI)) của vật liệu xúc tác

Một phần của tài liệu (LUẬN án TIẾN sĩ) nghiên cứu tổng hợp vật liệu tio2 fe2o3 GNP từ quặng ilmenite và graphit định hướng chuyển hóa Cr(VI) trong nước thải công nghiệp quốc phòng (Trang 154 - 158)

CHƯƠNG 3 KẾT QUẢ VÀ THẢO LUẬN

3.2. Nghiên cứu quá trình chuyển hóa Cr(VI) của vật liệu tổ hợp TiO2-

3.2.2. Quá trình chuyển hóa Cr(VI)) của vật liệu xúc tác

3.2.2.1. Hiệu quả chuyển hóa Cr(VI) của vật liệu tổ hợp TiO2- Fe2O3/GNP

Hình 3.45. Đồ thị đánh giá hiệu quả quá trình quang xúc tác chuyển hóa Cr(VI) của vật liệu tổ hợp TiO2- Fe2O3/GNP

Như trên hình 3.45, có thể thấy rằng khi được chiếu sáng, hiệu suất chuyển hóa Cr(VI) cao nhất được ghi nhận đối với mẫu TFG20, hiệu suất chuyển hóa thấp nhất là trong trường hợp không sử dụng xúc tác. Quá trình chiếu sáng khi không có mặt chất xúc tác (thể tích etanol sử dụng 0,2 mL (1% thể tích mẫu xử lý), Cr (VI) cũng bị chuyển hóa nhưng lượng Cr(VI) giảm gần như không đáng kể, sau 90 phút phần trăm chuyển hóa chỉ là 11,6%.

Đối với GNP, khi chiếu sáng hàm lượng Cr(VI) suy giảm không đáng kể, sau 90 phút chiếu sáng hàm lượng Cr(VI) chỉ giảm xuống 28,1%. Điều này được giải thích là do hoạt tính xúc tác quang của GNP là thấp. Các mẫu có chứa Ti (TFG0 và TFG20) đều có hoạt tính xúc tác quang cao. Khi có mặt GNP, trong điều kiện chiếu sáng, mẫu TFG20 có hoạt tính cao nhất, điều này chứng tỏ hiệu quả của quá trình tổ hợp 2 oxit Ti và Fe với GNP, GNP với độ dẫn điện cao giúp cho quá trình khuếch tán electron diễn ra nhanh hơn và nhờ đó quá

Mẫu TFG0 cũng có hoạt tính xúc tác quang cao trong vùng ánh sáng khả kiến do đó có thể nói sự kết hợp giữa 2 oxit Fe và Ti đã làm giảm năng lượng vùng cấm (điều này đã được chứng minh bằng các kết quả đo UV-VIS DRS). 3.2.2.2. Tốc độ phản ứng và cơ chế xử lý kim loại nặng của vật liệu tổ

hợp TiO2- Fe2O3/GNP

Hằng số tốc độ của quá trình quang xúc tác xử lý Cr (VI) trong môi trường nước với nồng độ loãng được xác định qua phương trình Langmuir– Hinshelwood bậc nhất tuyến tính theo đồ thị mối quan hệ giữa hàm ln(Ct/C0) với thời gian.

kt= -ln(Ct/C0)

Trong đó Ct là hàm lượng Cr (VI) tại thời điểm t và C0 là hàm lượng của các ion trên tại thời điểm bắt đầu quá trình xúc tác quang (ở đây chính là thời điểm sau khi đạt hấp phụ cực đại.

Hình 3.46. Mối quan hệ -ln(Co/Ct) với thời gian của quá trình quang xúc tác xử lý Cr(VI) của vật liệu tổ hợp TiO2- Fe2O3/GNP

120

Đồ thị hình 3.46 chỉ ra rằng mối quan hệ giữa ln(Co/Ct) và thời gian phản ứng (t) là tuyến tính. Điều này cho thấy phản ứng xúc tác tuân theo mô hình động học Langmuir - Hinshelwood với hệ số tương quan cao là 0,987. Hằng số tốc phản ứng thực nghiệm trong trường hợp xử lý Cr (VI) được tính toán là bằng 0,0649 (phút-1). Phương trình động học quang xúc tác xử lý là phương trình giả bậc 1.

Các công trình nghiên cứu trước đây đã chứng minh rằng graphen có thể được sử dụng như vật liệu nền để hỗ trợ và là chất hoạt hóa để nâng cao khả năng phân tách các hạt mang điện (lỗ trống và các electron) nhờ vào việc cản trở quá trình tái tổ hợp của các cặp electron và lỗ trống được tạo ra do quá trình chiếu bức xạ vào hỗn hợp oxit 2 thành phần Fe-Ti, do đó làm tăng thời gian sống của các hạt mang điện [123], [ 33]. Graphen cũng đóng vai trò quan trọng trong việc nâng cao hiệu quả của quá trình hấp phụ kim loại nặng vì sự ảnh hưởng qua lại của quá trình chuyển dịch các hạt mang điện xen giữa các bề mặt một cách dễ dàng với chất bị hấp phụ [32], [ 33].

Trên cơ sở những thảo luận ở trên, kết hợp với các nghiên cứu đã được công bố, cơ chế của quá trình quang xúc tác chuyển hóa kim loại nặng bằng vật liệu tổ hợp TiO2- Fe2O3/GNP trong vùng ánh sáng khả kiến bước đầu được đề xuất trên hình 3.47.

Theo đó, nhờ sự có mặt của Fe, năng lượng vùng cấm của vật liệu bán dẫn tổ hợp 2 oxit TiO2- Fe2O3 được thu hẹp, khi vật liệu tổ hợp được chiếu sáng bằng ánh sáng khả kiến, tạo ra các cặp electron-lỗ trống, các electron được kích hoạt sẽ nhảy từ vùng hóa trị (VB) lên vùng dẫn của vật liệu (CB) [70]. Các electron được tạo thành sau đó di chuyển đến bề mặt của tấm graphen và hỗ trợ quá trình phân tách các hạt mang điện và kết quả là quá trình tái tổ hợp của các electron và lỗ trống sẽ được ngăn chặn.

Các lỗ trống quang sinh sẽ phản ứng với H2O hoặc nhóm OH− để hình thành các gốc tự do OH·, các gốc tự do này sẽ tham gia vào quá trình oxy hóa

Hình 3.47. Mô phỏng cơ chế xúc tác quang chuyển hóa Cr(VI) bằng vật liệu tổ hợp TiO2- Fe2O3/GNP

Mặt khác, các electron được sinh ra cũng tham gia vào quá trình khử các ion Cr (VI) (trong môi trường axit) để hình thành các ion Cr (III) trên bề mặt của tấm GNP [76].

3.2.2.3. Khả năng tái sử dụng vật liệu xúc tác quang

Khả năng tái sử dụng vật liệu quang xúc tác tổ hợp TiO2- Fe2O3/GNP được khảo sát với số lần sử dụng là 5. Tiến hành xử lý với mẫu có nồng độ Cr (VI) ban đầu là 10 ppm, pH2, sau mỗi khoảng thời gian 90 phút, lấy mẫu đo hiệu suất chuyển hóa, bổ sung lượng dung dịch hao hụt, điều chỉnh nồng độ mẫu về nồng độ ban đầu là 10 ppm.

Kết quả cho thấy, hiệu suất chuyển hóa sau 5 lần chuyển hóa có suy giảm nhưng chỉ dưới 10% từ 99,8% xuống 90,3%. Điều này thể hiện rằng vật liệu quang xúc tác tổ hợp TiO2- Fe2O3/GNP có thể tái sử dụng một cách hiệu quả.

122

Hình 3.48. Đồ thị đánh giá hiệu quả xử lý Cr(VI) sau 5 lần tái sử dụng

Một phần của tài liệu (LUẬN án TIẾN sĩ) nghiên cứu tổng hợp vật liệu tio2 fe2o3 GNP từ quặng ilmenite và graphit định hướng chuyển hóa Cr(VI) trong nước thải công nghiệp quốc phòng (Trang 154 - 158)

Tải bản đầy đủ (DOCX)

(196 trang)
w