Go to Purchase Now>>

Một phần của tài liệu (LUẬN VĂN THẠC SĨ) Hiệu ứng đốt từ trong các hạt từ kích thước nanomet (Trang 75 - 82)

 Merge multiple PDF files into one

 Select page range of PDF to merge

 Select specific page(s) to merge

 Extract page(s) from different PDF

TÀI LIỆU THAM KHẢO

Tiếng Việt

1 Lê Thị Cát Tường (2005), ―Nghiên cứu cấu trúc của một số vật liệu perovskite (ABO3) và vật liệu nanô tinh thể bằng nhiễu xạ tia X mẫu bột‖, Luận án tiến sĩ khoa học vật liệu, Hà Nội.

Tiếng Anh

2 Alexiou C. and Jurgons R. (2007), ―Magnetic drug targeting‖,

Magnetism in medicine: a handbook, second edition, edited by W. Andra and H. Howak, Willey, Berlin, pp. 597-605.

3 Alexiou C., Arnold W., Klein R. J., Parak F. G., Hulin P., Bergemann C., Erhardt W., Wagenpfeil S., and Lubbe A. S. (2000), ―Locoregional cancer treatment with magnetic drug targeting‖, Cancer Res., 60, pp. 6641–6648.

4 Allen L. M., Kent J., Wolfe C., Ficco C., and Johnson J. (1997), ―MTCTM: a magnetically targetable drug carrier for paclitaxel‖,

Scientific and clinical applications of magnetic carriers, edited by Hafeli U., Schutt W., Teller J., and Zborowski M., Plenum Press, New York, London, pp. 481-494.

5 Andra W., d’Ambly C.G., Hergt R., Hilger I., and Kaiser W.A. (1999), ―Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia‖, J. Magn. Magn. Mater., 194, pp. 197-203.

6 Ania C.O., Parra J.B., Menendez J.A., and Pis J.J. (2005), ―Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons‖, Mic. Mes. Mat., 85, pp. 7-15.

7 Babincova M., Leszczynska D., Sourivong P., Cicmanec P., and Babinec P. (2001), ―Superparamagnetic gel as a novel material for electromagnetically induced hyperthermia‖, J. Magn. Magn. Mater., 225, pp. 109-112.

8 Chan D.C.F., Kirpotin D.B., Bunn P.A. (1993), ―Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer‖, J. Magn. Magn. Mater., 122, pp. 374-378.

9 Dutz S., Hergt R., Murbe J., Muller R., Zeisberger M., Andra W., Topfer J., Bellemann M.E. (2007), ―Hysteresis losses of magnetic nanoparticle

powders in the single domain size range‖, J. Magn. Magn. Mater., 308, pp. 305-312.

10 Falk M. H. and Issels R. D. (2001), ―Hyperthermia in oncology‖, Int. J. Hyperthermia, 17, pp. 1-18.

11 Gilchrist R.K., Medal R., Shorey W.D., Hanselman R.C., Parrot J.C., and Talor C.B. (1957), ―Sellective inductive heating of lymph nodes‖,

Ann. Surgery, 146, pp. 596-606.

12 Gneveckow U., Jordan A., Scholz R., Brub V., Waldofner N., Ricke J., Feussner A., Hildebrandt B., Rau B., and Wust P. (2004), ―Description and characterization of the novel hyperthermia- and thermoablation- system MFH300F for clinical magnetic fluid hyperthermia‖, Med. Phys., 31, pp. 1444-1451.

13 Gneveckow U., Jordan A., Scholz R., Eckelt L., Maier-Hauff K., Johannsen M., and Wust P. (2005), ―Magnetic force nanotherapy: with nanoparticles against cancer. Experiences from three clinical trials‖,

Biomed. Techn., 50, pp. 92-93.

14 Gordon R.T., Hines J.R., Gordon D. (1979), ―Intracellular hyperthermia: a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations‖, Medical Hypothesis 5, pp. 83-102.

15 Hafeli U. and Pauer G.J. (1999), ―In vitro and in vivo toxicity of magnetic microspheres‖, J. Magn. Magn. Mater. 194, pp. 76.

16 Hafeli U. O., Pauer G. J., Roberts W. K., Humm J. L., and Macklis R. M. (1997), ―Magnetically targeted microspheres for intracavitary and intraspinal 90Y radiotherapy‖, Scientific and clinical applications of magnetic carriers, edited by Hafeli U., Schutt W., Teller J., and Zborowski M., Plenum Press, New York, London, pp. 501-516.

17 Handy E.S., Ivkov R., Ellis-Busby D., Foreman A., Braunhut S.J., Gwost D.U., and Ardman B. (2003), ―Thermo-therapy via targeted delivery of nanoscale magnetic particles‖, US Patent Appl. Publ.

US2003/0032995.

18 Hatch G. P. and Stelter R. E. (2001), ―Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems‖, J. Magn. Magn. Mater.,225, pp. 262– 276.

19 Hergt R. and Andra W. (2007), magnetism in medicine

20 Hergt R., Andra W., d’Ambly C.G., Hilger I., Kaiser W.A., Richter U.,

fine particles‖, IEEE Trans. Magn., 34, pp. 3745-3754.

21 Hergt R. and Dutz S. (2007), ―Magnetic particle hyperthermia – biophysical limitations of a visionary tumour therapy‖, J. Magn. Magn. Mater., 311, pp. 187-192.

22 Hergt R., Dutz S., Muller R., and Zeisberger M. (2006), ―Magnetic particle hyperthermia: nanoparticle magnetism and materials developement for cancer therapy‖, J. Phys.: Condens. Matter, 18, pp. 2919-2934.

23 Hergt R., Hiergeist R., Hilger I., Kaiser W.A., Lapatnikov Y., Margel S., and Richter U. (2004), ―Maghemite nanoparticles with very high AC- losses for application in RF-magnetic hyperthermia‖, J. Magn. Magn. Mater., 207, pp. 345-357.

24 Hergt R., Hiergeist R., Zeisberger M., Glockl G., Weitschies W., Pamirez L.P., Hilger I., and Kaiser W.A. (2004), ―Enhancement of AC- losses of magnetic nanoparticles for heating applications‖, J. Magn. Magn. Mater., 280, pp. 358-368.

25 Hergt R., Hiergeist R., Zeisberger M., Schuler D., Heyen U., Hilger I., Kaiser W.A. (2005), ―Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools‖, J. Magn. Magn. Mater., 293, pp. 80-86.

26 Hiergeist R., Andra W., Buske N., Hergt R., Hilger I., Richter U., and Kaiser W. (1999), ―Application of magnetite ferrofluids for hyperthermia‖, J. Magn. Magn. Mater., 201, pp. 420-422.

27 Hilger I., Andra W., Hergt R., Hiergeist R., Schubert H., and Kaiser W. A. (2001), ―Electromagnetic heating of breast tumours in interventional radiology: in-vitro and in-vivo studies in human cadavers and mice‖,

Radiology, 218, pp. 570.

28 Hilger I., Fruhauf K., Andra W., Hiergeist R., Hergt R., and Kaiser W.A.

(2002), ―Heating potential of iron oxides for therapeutic purposes in

inteventional radiology‖, Academic Radiology, 9, pp. 198-202.

29 Johannsen M., Gneveckow U., Eckelt L., Feussner A., Waldofner N.,

Scholz R., Deger S., Wust P., Loening S.A., and Jordan A. (2005), ―Clinical hyperthermia of prostate cancer using magnetic nanoparticles:

Presentation of a new interstitial technique‖, Int. J. Hyperthermia, 21:7,

pp. 637-647.

30 Johannsen M., Gneveckow U., Taymoorian K., Cho H.C., Thiesen B.,

―Thermal therapy of prostate cancer using magnetic nanoparticles‖,

Actas Urol Esp., 31, pp. 660-667.

31 Johannsen M., Gneveckow U., Taymoorian K., Thiesen B., Waldofner

N., Scholz R., Jung K., Jordan A., Wust P., and Loening S.A. (2007), ―Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a

prospective phase I trial‖, Int. J. Hyperthermia, 23:3, pp. 315-323.

32 Johannsen M., Gneveckow U., Thiesen B., Taymoorian K., Cho C.H.,

Waldofner N., Scholz R., Jordan A., Loening S.A., and Wust P. (2007), ―Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution‖,

European urology, 52, pp. 653-662.

33 Jordan A., Rheinlander T., Waldofner N., and Scholz R. (2003), ―Increase of the specific absorption rate (SAR) by magnetic fractionation of magnetic fluids‖, Journal of Nanoparticle Research, 5, pp. 597-600. 34 Jordan A., Scholz R., Wust P., Fahling H., Krause J., Wlodarczyk W.,

Sander B., Vogl T., and Felix R. (1997), ―Effects of magnetic fluid hyperthermia on C3H mammary carcinoma in vivo‖, Int. J. Hyperthermia, 13, pp. 587.

35 Jordan A., Wust P., Scholz R., Fahling H., Krause J., and Felix R. (1997), ―Magnetic fluid hyperthermia‖, Scientific and clinical applications of magnetic carriers, edited by Hafeli U., Schutt W., Teller J., and Zborowski M., Plenum Press, New York, London, pp. 569-595. 36 Kikukawa N., Takemori M., Nagano Y., Sugasawa M., and Kobayashi

S. (2004), ―Synthesis and magnetic properties of nanostructured spinel ferrites using a glycine-nitrate process‖, J. Magn. Magn. Mater., 284, pp. 206-214.

37 Kobayashi S., Kikukawa N., Sugasawa M., and Yamaura I. (2004), ―Method for regenerating adsorbent by heating‖, Euro. Patent Appl., WO 2003/080237.

38 Kuznetsov A.A., Leontiev V.G., Brukvin V.A., Vorozhtsov G.N., Kogan B.Y., Shlyakhtin O.A., Yunin A.M., Tsybin O.I., and Kuznetsov O.A. (2007), ―Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature‖, J. Magn. Magn. Mater., 311, pp. 197-203.

39 Kuznetsov A.A., Shlyakhtin O.A., Brusentsov N.A., and Kuznetsov O.A. (2002), ―Smart mediators for self-controlled inductive heating‖,

European Cells and Materials, 3, pp. 75-77.

40 Kuznietsov A., Harutyunyan A. R., Dobrinski E. K., Filipov V. I., Malenkov A. G., Vanin A. F., and Kuznietsov O. A (1997), ―Ferro- carbon particles: preparation and clinical applications‖, Scientific and clinical applications of magnetic carriers, edited by Hafeli U., Schutt W., Teller J., and Zborowski M., Plenum Press, New York, London, pp. 379-389.

41 Lubbe A. S., Bergemann C., Brock J., and McClure D. G. (1999), ―Physiological aspects in magnetic drug-targeting‖, J. Magn. Magn. Mater., 194, pp. 149–55.

42 Mornet S., Vasseur S., Grasset F., and Duguet E. (2004), ―Magnetic nanoparticle design for medical diagnosis and therapy‖, J. Mater. Chem., 14, pp. 2161-2175.

43 Moroz P., Jones S. K., Gray B. N. (2002), ―Magnetically mediated hyperthermia: current status and future direction‖, Int. J. Hyperthermia, 18, pp. 267.

44 Neuberger T., Schopf B., Hofmann H., Hofmann M., and Rechenberg B. (2005), ―Superparamagnetic nanoparticles for biomedical applications‖,

J. Magn. Magn. Mater., 293, pp. 483.

45 O’Handley R.C. (2000), ―Modern magnetic materials, principles and applications‖, John Willey and Sons, Inc.

46 Pankhurst Q. A., Connolly J., Jones S. K., and Dobson J. (2003), ―Applications of magnetic nanoparticles in biomedicine‖, J. Phys. D: Appl. Phys., 36, pp. 167-181.

47 Pollert E., Knizek K., Marysko M., Kaspar P., Vasseur S., and Duguet E. (2007), ―New TC-tuned magnetic nanoparticles for self-controlled hyperthermia‖, J. Magn. Magn. Mater., 316, pp. 122-125.

48 Rabin Y. (2002), ―Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense?‖, Int. J. Hyperthermia, 18, pp. 194- 199.

49 Rand R.W., Snow H.D., Elliott D.G., and Haskins G.M. (1985), ―Induction heating method for use in causing necrosis of neoplasm‖, US Patent 4, 545, 368.

50 Robins H. I., Woods P. J., Schmitt C. L., and Cohen J. D. (1994), ―A new technological approach to radiant heat whole body hyperthermia‖,

Cancer Letters, 79, pp. 137-145.

magnetic field‖, J. Magn. Magn. Mater., 252, pp. 370-374.

52 Shlyakhtin O.A., Leontiev V.G., Young-Jey Oh and Kuznetsov A.A. (2007), ―New manganite-based mediators for self-controlled magnetic heating‖, Smart Mater. Struct., 16, pp. 35-39.

53 Vasseur, S., Duguet E., Portier J., Goglio G., Mornet S., Hadova E., Knizek K., Marysko M., Veverka P., and Pollert E. (2006), ―Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia‖, J. Magn. Magn. Mater., 302, pp. 315-320. 54 Widder K. J., Morris R. M., Poore G. A., Howard D. P., and Senyei A.

E. (1983), ―Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin—total remission in Yoshida sarcoma- bearing rats‖, Eur. J. Cancer Clin. Oncol., 19, pp.135–139.

55 Yanase M., Shinkai M., Honda H., Wakabayashi T., Yoshida J., and Kobayashi T (1998), ―Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study‖, Jpn. J. Cancer Res., 89, pp. 463-469.

56 Zeisberger M., Dutz S., Muller R., Hergt R., Matoussevitch N., and Bonnemann H. (2007), ―Metallic cobalt nanoparticles for heating applications‖, J. Magn. Magn. Mater., 311, pp. 224-227.

57 Zeng Q., Baker I., Loudis J.A., Liao Y., Hoopes P.J., and Weaver J.B. (2007), ―Fe/Fe oxide nanocomposite particles with large specific absorption rate for hyperthermia‖, Appl. Phys. Lett., 90, pp. 233112.

PDF Merger

Thank you for evaluating AnyBizSoft PDF Merger! To remove this page, please Merger! To remove this page, please

register your program!

Go to Purchase Now>>

 Merge multiple PDF files into one

 Select page range of PDF to merge

 Select specific page(s) to merge

 Extract page(s) from different PDF

Một phần của tài liệu (LUẬN VĂN THẠC SĨ) Hiệu ứng đốt từ trong các hạt từ kích thước nanomet (Trang 75 - 82)

Tải bản đầy đủ (PDF)

(82 trang)