1. 2 Chuyển động dịch chuyển ngẫu nhiên (Brown)
2.2. Các phương pháp khảo sát
2.2.1. Kính hiển vi điện tử quét (SEM- Scanning Electron Microscope)
H2O HAuCl4 Na3C6H5O7
~1000C ~1000C ~1000C ~1000C ~1000C
Hiện nay, kính hiển vi điện tử quét đang được sử dụng rộng rãi trong việc nghiên cứu ảnh vi hình thái bề mặt mẫu. Tuỳ thuộc vào chất lượng thiết bị, có thể ghi ảnh hiển vi với phân giải tới vài nanô mét.
Nguyên lý hoạt động: Một chùm tia điện tử đi qua các thấu kính điện từ hội tụ tại một diện tích rất nhỏ chiếu lên bề mặt mẫu nghiên cứu làm phát ra điện tử thứ cấp. Một detector được bố trí để thu tín hiệu điện tử thứ cấp từ mẫu phát ra khi điện tử chiếu vào, quét trên bề mặt mẫu và dùng tín hiệu này khuếch đại lên để điều khiển cường độ sáng của tia điện tử quét trên màn hình quan sát (hình 2.3).
Giới hạn của độ phân giải hay khoảng cách tối thiểu d có thể phân biệt được theo Rayleigh tỷ lệ với bước sóng của tia chiếu tới d ~. Vì vậy tia điện tử có bước sóng ngắn vài chục nm tùy thuộc vào trường gia tốc sẽ cho độ phân giải của kính hiển vi điện tử cao nhiều lần so với giới hạn quang học.
Hình 2.3. Sơ đồ khối của kính hiển vi điện tử quét
Đầu dò điện tử thứ cấp Các thấu kính từ Các cuộn dây quét Điện cực Anốt Súng điện tử Chùm tia điện tử Bộ quét màn hình Đầu dò điện tử tán xạ ngược Mẫu đo
Các tính năng của kính hiển vi điện tử quétSEM:
- Quan sát bề mặt mẫu rắn ở các độ phóng đại khác nhau.
- Độ sâu trường quan sát lớn hơn rất nhiều so với kính hiển vi quang học, cho phép thu ảnh lập thể.
- Kết hợp với đầu thu phổ tán xạ năng lượng tia X (EDX) cho phép phân tích thành phần nguyên tố của vùng quan sát.
Trên sơ sở đó trong đề tài này tôi đã dùng kính hiển vi điện tử quét SEM để quan sát và xác định kích thước của các hạt nano vàng chế tạo được
2.2.2. Phổ hấp thụ UV-Vis
Chiếu một chùm tia sáng đơn sắc có cường độ I0vào môi trường vật chất có bề dày l (cm) và nồng độ C(mol/l), thì chùm tia này sẽ bị môi trường vật chất hấp thụ và truyền qua. Cường độ I của chùm tia truyền qua môi trường này bị giảm theo quy luật Lamber-Beer:
𝐿𝑜𝑔 (𝐼0
𝐼) = 𝐾. 𝑛 (2.1)
Hay: log (𝐼0
𝐼) = 𝜀1𝐶 (2.2)
Trong đó: 𝐾: là hệ số hấp thụ mol hay độ hấp thụ của môi trường, 𝑛: là số mol chất nghiên cứu đặt trên đường đi của bức xạ.
Đại lượng log(I0/I ) được gọi là mật độ quang (D) hoặc độ hấp thụ (A).
𝜀 là hệ số hấp thụ mol (hệ số mol) có giá trị bằng mật độ quang của dung dịch khi nồng độ chất hấp thụ bằng một đơn vị và độ dầy chất hấp thụ bằng một đơn vị. Hệ số hấp thụ chỉ phụ thuộc vào bản chất của chất hấp thụ và bước sóng của bức xạ bị hấp thụ. Độ truyền qua của môi trường T=I /I0
Hình 2.4. Biểu diễn định luật Lamber-Beer
Không một chất nào lại hấp thụ trong toàn bộ các vùng phổ điện từ. Sự hấp thụ thường tập trung vào từng vùng phổ hẹp, cho nên để thuận lợi, người ta thường biểu diễn và xem xét từng vùng phổ riêng biệt như: vùng tử ngoại, khả kiến, hồng ngoại…
Đường cong biểu diễn sự phụ thuộc của hệ số hấp thụ Kνvào tần số hoặc bước sóng gọi là đường cong hấp thụ (hay phổ hấp thụ). Mỗi chất hấp thụ đều hấp thụ lọc lựa ở những bước sóng khác nhau.
Phương trình (2.1) là biểu thức toán học của định luật Beer-Lamber: khi hấp thụ tia đơn sắc, độ hấp thụ phụ thuộc bậc nhất vào nồng độ chất hấp thụ. Tùy từng chất, định luật Beer-Lamber thường đúng trong một khoảng nồng độ.
Hình 2.5 trình bày sơ đồ nguyên lý của hệ đo hấp thụ quang hai chùm tia. Ánh sáng tới được tách thành các ánh sáng đơn sắc nhờ cách tử nhiễu xạ. Tiếp đó, chùm sáng đơn sắc được chia thành hai tia có cường độ bằng nhau nhờ gương bán phản xạ. Một trong hai tia sáng truyền qua cuvet thạch anh chứa dung dịch mẫu cần nghiên cứu, có cường độ I sau khi truyền qua mẫu. Tia còn lại truyền qua cuvet tương tự chứa dung môi để so sánh. Cường độ của tia sáng sau khi truyền qua mẫu so sánh là I0. Việc quay cách tử và tự động so sánh cường độ các tia sáng sau khi truyền qua dung dịch chứa mẫu nghiên cứu và mẫu
dung môi sẽ cho phép nhận được phổ hấp thụ của mẫu nghiên cứu dưới dạng sự phụ thuộc của độ hấp thụ vào bước sóng.
Hình 2.5. Sơ đồ nguyên lý của hệ đo hấp thụ UV-Vis hai chùm tia
Các dung dịch chứa keo nano vàng được đo trên thiết bị UV-Vis hai chùm tia Jasco V770 tại Khoa Vật lý và Công nghệ-Trường Đại học Khoa học-Đại học Thái Nguyên. Thiết bị này cho phép đo phổ từ 200 nm đến 2700 nm.