NGHIÊN CỨU TÍNH TOÁN CHỈ SỐ ĐỘ TIN CẬY CỦA DẦM T ỨNG SUẤT TRƯỚC

Một phần của tài liệu HỘI NGHỊ SINH VIÊN NGHIÊN CỨU KHOA HỌC KHOA XÂY DỰNG CẦU ĐƯỜNG, LẦN 16-NĂM 2019 15th CONFERENCE ON STUDENT SCIENTIFIC RESEARCH, 2019 (Trang 34)

TRƯỚC

TRƯỚC tĩnh tải, hoạt tải, mặt cắt hình học và cường độ thép dự ứng lực,…Những kết quả tính toán cho thấy rằng có sự khác nhau giữa những chỉ số độ tin cậy momen của cầu dầm T ứng suất trước. Những sự khác biệt đó thể hiện một cách rõ ràng việc thiết kế dư thừa sức kháng của tiết diệndầm T ứng suất trước.

Từ kha: dầm T ứng suất trước; cầu bê tông cốt thép; thép dự ứng lực độ tin cậy; xác suất.

Abstract: In reinforced concrete bridges, the parameters such as material, structure types and loads are random variables. These random variables have influenced on the probability of failure of the structures which is represented by the reliability index. This paper will focus on the reliability analysis of the pre-stressed T beams. The computation is based on the uncertainties of dead loads, live loads, sectional geometries and strength of...The results of computation show that there are differences between the moment reliability indices of the pre-stressed T beams. These differences clearly indicate the overdesign of pre-stressed steel.

Key words: pre-stressed T beams; reinforced

concrete bridge; pre-stressed steel; reliability; probability.

1.Đặt vấn đề

Trong tiêu chuẩn thiết kế cầu hiện nay “Tiêu chuẩn

ngành 22TCN 272-05 - Tiêu chuẩn thiết kế cầu.” và “Tiêu

chuẩn Việt Nam TCVN 11823:2017 - Tiêu chuẩn thiết kế cầu” xây dựng hệ số sức kháng và hệ số tải trọng tham

khảo theo AASHTO LRFD 1998 với mục tiêu chỉ số an toàn của các cấu kiện ở cáctrạng thái giới hạn (TTGH) là

như nhau và độ tin cậy xấp xỉ =3,5. Bài báo này chủ yếu tập trung vào việc phân tích độ tin cậy của dầm T ứng suất trước để tìmra xác suất phá hoại dầm và dộ tin cậy của chúng.

2.Cơ sở lý thuyết

2.1. Chỉ số độ tin cậy

Xác suất phá hoại của kết cấu được đo bằng chỉ sốđộ

tin cậy (𝛽). Độ tin cậy là khả năng (đo bằng xác suất) của kết cấu đáp ứng các yêu cầu đã xác định trong suốt tuổi thọ thiết kế dự định. Bao gồm cái yếu tố quan trọng sau:

+ Yêu cầu (khả năng làm việc) cho trước - xác định qua sự pháhoại kết cấu

+ Khoảng thời gian - đánh giá bằng tuổi thọ phục vụ yêu cầu T

+ Mức độ tin cậy - đánh giá bằng xác suất hỏng 𝑃𝑓

+ Điều kiện sử dụng - giới hạn các yếu tố đầu vào là

các biến ngẫu nhiên.

2.2. Phương pháp tính độ tin cy (𝜷)

Hàm trạng thái giới hạn (limit state function):

Phân tích độ tin cậy được thể hiện qua các hàm trạng thái giới hạn cho các loại cấu trúc và các thành phần tải trọng. Trong quá trình hiệu chỉnh, hiệu ứng tải trọng và sức kháng của vật liệu là các biến ngẫu nhiên. Hàm trạng thái giới hạn sẽ biểu thị ranh giới giữa giai đoạn kết cấu an toàn với giai đoạn kết cấu bị phá hủy.

𝑔(𝑅, 𝑄) = 𝑅 − 𝑄 (2-1)

Trong đó: R đại diện cho sức kháng kết cấu; Q đại diện cho hiệu ứng tải trọng. Nếu 𝑔 ≥ 0 thì kết cấu an toàn, nếu 𝑔 < 0thì kết cấu không an toàn. Xác suất phá hoại kết cấu Pf tương ứng với xác suất xảy ra sự kiện

không an toàn 𝑃𝑓 = 𝑃(𝑅 − 𝑄 < 0) = 𝑃(𝑔 < 0) (2-2) 𝛽 = 𝜇𝑅−𝜇𝑄 √𝜎𝑅2+𝜎𝑄2 (2-3) Trong đó:

𝜇𝑅là giá trị trung bình sức kháng của vật liệu.

𝜎𝑅 là độ lệch chuẩn sức kháng của vật liệu.

𝜇𝑄 là giá trị trung bình của hiệu ứng tải trọng

𝜎𝑄 là độ lệch chuẩn của hiệu ứng tải trọng.

𝛽 = −Φ−1(𝑃𝑓)hoặc 𝑃𝑓= Φ(−β) (2-4)

Hình 1: Hàm mật độ xác suất tải trọng, sức kháng và biên an toàn

2.3. Phương pháp để tính độ tin cậy

Phương pháp Monte-Carlo simulation (MCS):

Các bước cơ bản phương pháp mô phỏng Monte Carlo như sau:

Một phần của tài liệu HỘI NGHỊ SINH VIÊN NGHIÊN CỨU KHOA HỌC KHOA XÂY DỰNG CẦU ĐƯỜNG, LẦN 16-NĂM 2019 15th CONFERENCE ON STUDENT SCIENTIFIC RESEARCH, 2019 (Trang 34)

Tải bản đầy đủ (PDF)

(59 trang)