Nguyên tắc hoạt động của chế độ chiều cao không đổi

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp các hệ vật liệu viologen trên nền graphite và graphene bằng phương pháp điện hóa (Trang 47 - 49)

Hình 2 .15 thơng số kỹ thuật phép đo CV

Hình 2.22 Nguyên tắc hoạt động của chế độ chiều cao không đổi

Trong chế độ này, đầu dị di chuyển trên bề mặt với khoảng cách khơng đổi và những thay đổi dòng xuyên hầm được ghi lại. Ưu điểm của chế độ này là tốc độ quét nhanh và do đó có thể loại bỏ được hiệu ứng “trơi” (tức là hình ảnh bị biến dạng) đối với những phép đo với độ phân giải cao (phép đo ở kích thước hình ảnh STM nhỏ). Nhược điểm của chế độ này là hầu như khó thực

hiện phép đo trên diện tích lớn hay bề mặt mẫu ghồ ghề bởi dễ xảy ra hiện tượng va chạm giữa đầu dị và mẫu.( hình 2.22)

2.4.5. Phương pháp đo Raman

Năm 1928, Chandrasekhra Venkata Raman khám phá ra hiện tượng mà sau này nó được mang tên ơng bằng những dụng cụ đo phổ thô sơ – hiện tượng tán xạ Raman [55]. Tán xạ Raman là một q trình tán xạ khơng đàn hồi giữa photon (lượng tử ánh sáng) và một lượng tử dao động của vật chất hay mạng tinh thể. Sau quá trình va chạm, năng lượng của photon giảm đi (hoặc tăng lên) một lượng bằng năng lượng giữa hai mức dao động của nguyên tử (hoặc mạng tinh thể) cùng với sự tạo thành (hoặc hủy) một hạt lượng tử dao động. Dựa vào phổ năng lượng thu được, ta có thể có những thơng tin về mức năng lượng dao động của nguyên tử, phân tử hay mạng tinh thể. Giống như các mức năng lượng của electron trong nguyên tử, các mức năng lượng dao động này cũng là đại lượng đặc trưng, có thể dùng để phân biệt nguyên tử này với nguyên tử khác trong mạng. Chính vì thế, tính ứng dụng của phổ tán xạ Raman là rất lớn. Phổ tán xạ Raman cũng cho chúng ta biết độ hoàn hảo của cấu trúc tinh thể.

Trong phổ tán xạ Raman, mẫu được chiếu xạ bởi chùm laser cường độ mạnh trong vùng tử ngoại-khả kiến (0) và chùm ánh sáng tán xạ thường được quan sát theo phương vng góc với chùm tia tới. Ánh sáng tán xạ bao gồm hai loại:

- Loại một được gọi là tán xạ Rayleigh, rất mạnh và có tần số đúng bằng tần số chùm tia tới (0).

- Loại hai được gọi là tán xạ Raman, rất yếu (10-5 chùm tia tới) có tần số là (0±m), trong đó m là tần số dao động phân tử. Vạch (0 - m ) được gọi là vạch Stockes và vạch (0 + m ) gọi là vạch phản Stockes. Do đó, trong quang

phổ Raman, chúng ta đo tần số dao động (m) như là sự dịch chuyển so với tần số chùm tia tới (0).

- Quang phổ kế Raman gồm 5 bộ phận chủ yếu:

+ Nguồn kích thích phổ Raman, thường làlaser liên tục (CW); + Hệ thống chiếu mẫu và hệ thống thu nhận các ánh sáng tán xạ; + Bộ phận giữ mẫu;

+ Máy đơn sắc hoặc máy quang phổ;

+ Hệ thống đo bao gồm đầu thu tín hiệu detector, máy khuếch đại và thiết bị hiển thị tín hiệu.

Sơ đồ nguyên lý của hệ đo Raman được trình bày trên Hình 2.23. Nguồn sáng được dùng là laser He - Ne với bước sóng kích thích 632,8 nm. Hệ đo được lắp thêm camera và màn hình để quan sát vị trí xảy ra tán xạ không đàn hồi.

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu tổng hợp các hệ vật liệu viologen trên nền graphite và graphene bằng phương pháp điện hóa (Trang 47 - 49)