1.3.2.1. Phương pháp trộn HA và polyme
Phương pháp phổ biến nhất để chế tạo composit HA/polyme là trộn HA ở dạng bột hoặc ở dạng huyền phù với các polyme. Phương pháp này có thể tạo ra vật liệu composit dạng bột, màng, khung xốp [149, 150]. Trộn HA với polyme và thay đổi tỉ lệ khối lượng các thành phần sẽ tạo ra các composit có tính chất khác nhau. HA là sản phẩm thương mại, hoặc được điều chế bằng các phương pháp hóa lí, hoặc được chiết tách từ pha khoáng tự nhiên của xương động vật, vỏ trứng, san hô… Tinh thể HA có nhiều hình dạng khác nhau, hình cầu, hình que, hình kim, hình phiến và thường kết tập thành từng khối do năng lượng bề mặt tương đối lớn của các tinh thể nano [151].
Murugan và cộng sự [152] đã sử dụng phương pháp này để chế tạo các hệ composit cấu trúc nano của HA với chitosan theo hai bước: kết tủa HA trong môi trường kiềm (ở pH = 10,0 bằng NH4OH) từ các muối CaCl2, (NH4)2HPO4 và tiếp theo là trộn HA cấu trúc nano với các dung dịch chitosan nồng độ khác nhau trong axit axetic ở nhiệt độ cố định. Finisie và các cộng sự [150] đã sử dụng phương pháp trộn để chế tạo composit HA và chitosan cấu trúc xốp từ hỗn hợp của HA, nhôm và chitosan với tỉ lệ khác nhau. Vai trò của nhôm là tạo ra các lỗ xốp có kích thước hơn 100 m được tạo thành qua quá trình tương tác giữa natri
aluminat với dung dịch đậm đặc NaOH giải phóng hydro. Composit HA/collagen cũng được chế tạo đơn giản bằng cách trộn bột HA và dung dịch hoặc gel collagen rồi tiến hành đông khô [149, 153]. Xác định cấu trúc của các composit thu được bằng quy trình chế tạo này cho thấy, các hạt HA bị “mắc kẹt vật lí” trong chất nền collagen được thể hiện trên Hình 1.9. Phương pháp này đơn giản nhưng rất khó để phân tán đồng nhất HA trong chất nền polyme do thiếu sự tương tác giữa pha vô cơ và pha hữu cơ.
Hình 1.9. Sơ đồ mô tả các hạt HA bị “mắc kẹt” vật lí trong chất nền collagen (a). Theo ảnh SEM, HA kết tập trong chất nền collagen
tổng hợp bằng phương pháp trộn (b) [127] 1.3.2.2.Phương pháp cơ nhiệt
Phương pháp cơ nhiệt để chế tạo vật liệu composit HA/polyme gồm các bước: nghiền trộn HA với polyme sau đó nén hoặc ép phun. Bước đầu tiên bị ảnh hưởng mạnh mẽ bởi các yếu tố như nhiệt độ, tốc độ nghiền trộn và thời gian xử lý… và được xem là quan trọng nhất để đạt được sự phân bố đồng nhất của các hạt vô cơ trong composit [154, 155].
Mathieu và các cộng sự [156] đã so sánh ba phương pháp điều chế composit HA/poly(L-lactic). Kỹ thuật đầu tiên là trộn bột HA khô và các viên polyme rồi nén khuôn. Quá trình thứ hai dựa trên sự phân tán của các hạt HA vào dung dịch chứa polyme và dung môi. Phương pháp thứ ba là ép đùn hỗn hợp HA/polyme nóng chảy. Phương pháp trộn bột khô dẫn đến sự phân tán không đồng đều các hạt vô cơ xung quanh các viên polyme, trong khi đó phương pháp thứ hai và thứ ba tạo ra một sự phân tán khá đồng nhất của HA trong poly(L-lactic) cũng như các polyme khác như poly(ε-caprolacton) [156], poly(hydroxybutyrat-co-hydroxyvalerat) [11],
poly(D, L-lactic) [157], poly(ete ete xeton) [158] và polyamit 66 [159]. Nhược điểm chính của phương pháp thứ hai là nguy cơ dư lượng dung môi hữu cơ độc hại. Phương pháp thứ ba cho phép điều chế một cách khá đồng nhất composit HA/polyme.
Li và cộng sự đã dùng sóng siêu âm hỗ trợ phân tán hạt nano HA hình kim vào monome anhydrit methacrylat, rồi sử dụng tia cực tím kích thích quá trình quang trùng hợp để tạo ra một mạng lưới liên kết ngang. Sản phẩm composit cuối cùng chứa tinh thể nano HA phân bố đồng nhất với các tính chất cơ học được cải thiện [160].
1.3.2.3.Phương pháp điện hóa
Các phương pháp điện hóa có thể tạo ra vật liệu composit HA/polyme dạng màng, màng đa lớp, sợi và ống.
a.Kỹ thuật mạ điện
Lắng đọng điện hóa (mạ điện) là một quá trình, trong đó các hạt composit lơ lửng trong môi trường lỏng, di chuyển trong một điện trường và được lắng đọng trên một điện cực. Cho đến nay, hai quá trình mạ điện đã được phát triển để tạo thành màng composit: lắng đọng điện di (EPD) và lắng đọng điện phân (ELD) [161]. Kỹ thuật này cho phép kiểm soát chặt chẽ các tính chất của màng về độ dày, tính đồng nhất và tỷ lệ lắng đọng. Phương pháp mạ điện đặc biệt thích hợp cho sự hình thành của màng đồng nhất trên nền của một hình dạng phức tạp hoặc lắng đọng trên các vùng được lựa chọn của chất nền. Pang và cộng sự [162] đã phát triển một phương pháp điện di đồng lắng đọng từng lớp composit HA/chitosan bảo vệ vật liệu thép khiến cho việc tiếp xúc với các dung môi sinh lý ít gây ra nhiễm trùng. Thành phần và độ dày của màng composit phụ thuộc vào hàm lượng HA và thời gian lắng đọng trong dung dịch chitosan. Grandfield và đồng nghiệp [163] chế tạo một lớp phủ HA/silica/chitosan sử dụng phương pháp EPD chế tạo lớp phủ có độ dày khác nhau (lên đến 100 µm). Thành phần lắng đọng, vi cấu trúc, độ xốp của lớp phủ phụ thuộc vào nồng độ HA, silica và chitosan trong dung dịch cũng như thời lượng lắng đọng. Để thay đổi bề mặt và bảo vệ hợp kim titan-niken trong môi trường sinh lý cơ thể, Sun và cộng sự [164] đã điều chế vật liệu composit dạng
màng của HA, heparin và thủy tinh sinh học trên nền chitosan, lắng đọng trên catot từ hợp kim nói trên. Redepenning và cộng sự [165] cũng điều chế composit HA và chitosan bằng phương pháp điện hóa từ pha brushit (một pha của CaP) và chitosan trong môi trường kiềm phủ trên miếng ghép titan.
Hình 1.10 trình bày phương pháp EPD để chế tạo lớp phủ composit chống ăn mòn gồm HA, hyaluronic axit và graphen oxit (GO-HY-HA) trên bề mặt titan [167].
Hình 1.10. Sơ đồ thí nghiệm (a) và cơ chế (b) của quá trình EPD điều chế lớp phủ composit GO-HY-HA trên chất nền Ti [167]
b. Kỹ thuật điện xoay tròn (electrospining technique)
Để chế tạo vật liệu composit dạng sợi với các tính năng độc đáo và thú vị, kỹ thuật điện xoay tròn được xem là một phương pháp đơn giản và hiệu quả. Vật liệu polyme được sử dụng trong kỹ thuật này có thể là các polyme tự nhiên như collagen, chitosan, tơ sợi; các polyme tổng hợp phân hủy sinh học như axit polyglycolic (PGA) và poly(-caprolacton) (PCL) [155]. Ito và cộng sự [168] đã chế tạo màng sợi nano của poly (3-hydroxybutyrat-co-3-hydroxyvalerat) (PHBV) bằng phương pháp điện xoay tròn và sau đó tạo composit với HA bằng cách ngâm màng trong dung dịch giả dịch thể người (SBF- Simulated Body Fluids). Các sợi
nano với đường kính trung bình dao động từ 100 đến 2000 nm liên kết với nhau làm tăng diện tích bề mặt riêng. Đặc biệt, quá trình phân hủy sinh học của màng HA/PHBV khá nhanh do sự xâm nhập của các enzym vào màng làm tăng tính ưa nước của bề mặt.
H. W. Kim và cộng sự [169] đã sử dụng phương pháp điện xoay tròn chế tạo composit HA/gelatin dạng sợi với kích thước 200-400 nm thể hiện trên Hình 1.11.
Kết tủa HA Đông khô Dung dịch Kỹ thuật điện Liên kết ngang composit HA/gelatin xoay tròn tạo màng sợi
Hình 1.11. Sơ đồ chế tạo màng sợi composit HA/gelatin theo phương pháp điện xoay tròn [169]
Kết tủa HA/gelatin được đông khô và hòa tan trong một dung môi hữu cơ hexafluoro-2-propanol (HFP), dạng sợi của composit HA/gelatin được chế tạo bằng
phương điện xoay tròn, sau đó được liên kết ngang tạo màng sợi. 1.3.2.4. Phương pháp kết tủa trực tiếp
Mặc dù các phương pháp trộn, cơ nhiệt, điện hóa nêu trên có nhiều ưu điểm, nhưng các composit thu được thường không đồng nhất ở mức vi cấu trúc vì khó có được sự phân bố đồng đều của pha vô cơ trong chất nền polyme. Điều này có thể làm suy giảm các đặc tính lý, hóa, cơ, tương thích sinh học và phân hủy sinh học của vật liệu. Vì vậy, trong mấy thập niên gần đây, các nhà nghiên cứu đang tập trung vào một phương pháp mới nhiều triển vọng là phương pháp kết tủa trực tiếp (in situ method) [129, 133, 170, 171]. Phương pháp này mô phỏng quá trình tạo thành composit vô cơ-hữu cơ trong tự nhiên. Kết tủa trực tiếp HA trong chất nền polyme cho phép kiểm soát cấu trúc và thành phần của composit với các tinh thể HA có kích thước nhỏ, độ tinh thể thấp, phân tán đồng đều trên nền polyme, tương
tự như HA sinh học [21, 27, 143]. Theo phương pháp kết tủa trực tiếp, các polyme có thể được trộn đồng thời hoặc riêng biệt với các tiền chất vô cơ của HA. Tỉ lệ các thành phần và điều kiện phản ứng khác nhau sẽ làm thay đổi các tính chất đặc trưng của composit HA/polyme.
Tampieri và cộng sự [126] đã chế tạo composit HA/collagen và so sánh với mô xương tự nhiên bằng cách sử dụng hai phương pháp khác nhau. Phương pháp thứ nhất là phân tán HA trong dung dịch collagen rồi thu sản phẩm bằng kỹ thuật đông khô. Phương pháp thứ hai là kết tủa trực tiếp HA trên các sợi collagen. Composit thu được bằng cách thứ nhất có cấu trúc tương tự như collagen ban đầu không khoáng hóa. Kích thước tinh thể HA không đồng nhất, thường kết tập và phân bố ngẫu nhiên vào chất nền, chứng tỏ rằng không có tương tác thực sự của HA với các sợi collagen. Trong khi đó, phương pháp thứ hai cho phép quá trình tạo mầm tinh thể nano HA trực tiếp trên các sợi collagen. Do vậy, hai thành phần (HA và collagen) có sự tương tác mạnh, hình thành một vật liệu hoàn toàn tương tự với mô xương tự nhiên.
S. C. Liou và cộng sự [172] đã chế tạo vật liệu composit HA/polyacrylic axit (PAA) bằng phương pháp kết tủa trực tiếp. Tinh thể HA hình kim, độ tinh thể kém, có cấu trúc nhân vỏ được kết tinh trực tiếp khi nhỏ dung dịch H3PO4 vào hỗn hợp chứa (CH3COO)2Ca và PAA. Hình thái học của HA tạo thành phụ thuộc vào pH của dung dịch và hàm lượng của PAA. Yamaguchi [173] đã phát triển phương pháp đồng kết tủa bằng cách nhỏ chitosan trong dung dịch axit photphoric vào huyền phù Ca(OH)2. Redepenning và cộng sự [174] trộn một dung dịch của polyme sinh học với tiền chất vô cơ để tạo thành pha khoáng CaP, tiếp theo kết tủa composit ở dạng hydrogel hoặc dạng hạt riêng biệt. Hu và cộng sự [175] đã đưa ra phương pháp, sử dụng chitosan dạng hydrogel và khoáng hóa nó thông qua phản ứng kết tủa trực tiếp HA khi kiểm soát quá trình khuếch tán các ion. M. Meskinfam và cộng sự [176] đã dùng phương pháp mô phỏng sinh học điều chế HA trong chất nền gelatin-tinh bột. Việc thay đổi hàm lượng polyme làm biến đổi cấu trúc và hình thái học của composit HA/gelatin/tinh bột. Ái lực mạnh của gelatin với HA cùng với tính phân cực của tinh bột làm cho HA được phân tán đồng đều trong chất nền polyme.
Chang và cộng sự [177] đã trình bày một quá trình tương tự để điều chế composit HA và gelatin, thông qua việc khuếch tán và điều chỉnh nồng độ các ion Ca2+ và PO43- trong quá trình hòa tan tiền chất và đồng kết tủa composit. Các phương pháp kết tủa trực tiếp nói trên đã tạo ra cấu trúc composit kết hợp đầy đủ tính chất giữa HA và chất nền polyme ở cấp độ micro hay nanomet. Đáng chú ý, mỗi phương pháp lại tạo ra một loại hình cụ thể của vật liệu composit với cấu trúc và tính chất đặc trưng.