Các nhân tố ảnh hưởng đến giá trị cảm nhận tổng thể của khách hàng đối vớ

Một phần của tài liệu (LUẬN văn THẠC sĩ) giá trị cảm nhận của khách hàng tỉnh thừa thiên huế đối với sản phẩm may mặc của công ty cổ phân dệt may huế (huegatex) (Trang 61)

với sản phẩm may mặc

Kiểm định độ tin cậy của thang đo

Đề tài đánh giá giá trị cảm nhận của KH TT. Huế đối với sản phẩm may mặc của công ty Huegatex. Trước khi vào phân tích dữ liệu, nghiên cứu tiến hành bước kiểm định độ tin cậy thang đo thông qua hệ số Cronbach’s Alpha phải được thực hiện đầu tiên để loại bỏ các biến không liên quan trước khi đến bước phân tích nhân tố khám phá (EFA)

Đề tài nghiên cứu sử dụng thang đo với 6 biến độc lập dựa trên mô hình nghiên cứu đề xuất: “Chất lượng cảm nhận”, “Giá trị xã hội”, “Giá trị cảm xúc”, “Giá cả cảm nhận”, “Tính chuyên nghiệp của nhân viên”, “Giá trị chức năng của công ty” với 23 biến quan sát được thiết kế và sử dụng trên thang đo Likert với 5 mức độ từ 1 (hoàn toàn không đồng ý) đến 5 (hoàn toàn đồng ý) để KH xem xét và tự đánh giá.

Để tiến hành kiểm tra độ tin cậy của thang đo thông qua hệ số Cronbach’s Alpha. Theo các nhà nghiên cứu, mức độ đánh giá các biến thông qua hệ số Cronbach’s Alpha được đưa ra như sau:

Những biến có hệ số tương quan biến tổng (Corrected Item Total Correlation) lớn hơn 0,3 và có hệ số Cronbach’s Alpha lớn 0,6 sẽ được chấp nhận và đưa vào

những bước phân tích xử lý tiếp theo (Nunnally & Bernstein 1994); dẫn theo Nguyễn Đình Thọ & Nguyễn Thị Mai Trang, 2009). Cụ thể là:

Hệ số Cronbach’s Alpha lớn hơn 0,8 : hệ số tương quan cao. Hệ số Cronbach’s Alpha từ 0,7 đến 0,8 : chấp nhận được.

Hệ số Cronbach’s Alpha từ 0,6 đến 0,7 : chấp nhận được nếu thang đo mới

Trong kiểm tra quá trình kiểm định độ tin cậy, các biến quan sát đều có hệ số tương quan biến tổng lớn hơn 0,3 nên không có biến nào bị loại bỏ khỏi mô hình.

Kết quả kiểm định Cronbach’s Alpha được tổng hợp trong bảng dưới đây:

Bảng 2.12 Bảng kiểm định độ tin cậy thang đo các biến độc lập

Biến Hệ số tƣơng quan biến tổng

Hệ số Cronbach’s Alpha nếu loại biến

1. Chất lƣợng cảm nhận: Cronbach’s Alpha = 0,786 CHATLUONG1 0,457 0,785 CHATLUONG2 0,566 0,745 CHATLUONG3 0,517 0,760 CHATLUONG4 0,614 0,728 CHATLUONG5 0,679 0,706

2. Giá trị xã hội: Cronbach’s Alpha =0,758

XAHOI1 0,607 0,661

XAHOI2 0,666 0,582

XAHOI3 0,520 0,755

3. Giá trị cảm xúc: Cronbach’s Alpha = 0,691

CAMXUC1 0,464 0,674

CAMXUC2 0,461 0,657

CAMXUC3 0,645 0,481

4. Giá cả cảm nhận : Cronbach’s Alpha = 0,754

GIACA1 0,546 0,712

GIACA2 0,560 0,697

GIACA3 0,643 0,600

5. Tính chuyên nghiệp của nhân viên: Cronbach’s Alpha =0,804

NHANVIEN1 0,684 0,697

NHANVIEN2 0,641 0,742

NHANVIEN3 0,629 0,755

6. Giá trị chức năng của công ty: Cronbach’s Alpha = 0,799

CHUCNANG1 0,684 0,681

CHUCNANG2 0,631 0,742

CHUCNANG3 0,624 0,749

Nguồn: Xử lý số liệu SPSS

Qua bảng tổng hợp kết quả kiểm định độ tin cậy của thang đo trên, có thể kết luận rằng thang đo được sử dụng trong nghiên cứu là hoàn toàn phù hợp và đáng tin cậy, đảm bảo cho bước phân tích các bước tiếp theo.

Bảng 2.13 Bảng kiểm định độ tin cậy thang đo biến phụ thuộc

Biến Hệ số tƣơng quan biến tổng

Hệ số Cronbach’s Alpha nếu loại biến Giá trị cảm nhận tổng thể: Cronbach’s Alpha = 0,718

TONGQUAT1 0,501 0,674

TONGQUAT2 0,579 0,577

TONGQUAT3 0,535 0,633

Nguồn:Xử lý số liệu SPSS

Hệ số Cronbach’s Alpha của yếu tố “giá trị cảm nhận tổng thể” = 0,718 là đạt yêu cầu, các hệ số tương quan biến tổng không có biến nào bé hơn 0,3 nên thỏa mãn, vì vậy không có biến nào bị loại trong thang đo GTCN của KH. Vì vậy, có thể sử dụng thang đo để tiến hành các kiểm định tiếp theo.

Phân tích nhân tố khám phá (Exploratory Factor Analysis – EFA)

oKiểm định KMO và Bartlett’s Test biến độc lập

Trước khi tiến hành phân tích nhân tố khám phá, nghiên cứu cần kiểm định KMO để xem xét việc phân tích này có phù hợp hay không. Việc kiểm định được thực hiện thông qua việc xem xét hệ số KMO (Kaiser Meyer – Olkin of Sampling Adequacy) và Bartlett’s Test.

Giá trị KMO là một tiêu chí dùng để xem xét sự thích hợp của EFA. Nội dung kiểm định: hệ số KMO phải thỏa mãn điều kiện 0,5 ≤ KMO ≤ 1, thì mới chứng tỏ được phân tích nhân tố khám phá EFA là phù hợp trong nghiên cứu này.

Kết quả thu được như sau:

Giá trị KMO bằng 0,808 lớn hơn 0,5 cho thấy phân tích EFA là phù hợp.

Kiểm định Bartlett’s Test có giá trị Sig.= 0,000 bé hơn 0,05; giả thuyết các biến không có tương quan với nhau trong tổng thể. Ta có thể kết luận rằng dữ liệu khảo sát được có thể đảm bảo các điều kiện để tiến hành phân tích nhân tố khám phá EFA và có thể sử dụng kết quả đó.

Bảng 2.14 Bảng kiểm định KMO and Bartlett’s Test biến độc lập

KMO and Bartlett’s Test

Trị số KMO (Kaiser Meyer – Olkin of Sampling Adequacy) 0,808

Đại lượng thống kê Bartlett’s Test

Approx. Chi – Square 922,851

Df 190

Sig. 0,000

Nguồn:Xử lý số liệu SPSS

oPhân tích nhân tố khám phá EFA biến độc lập

Trong nghiên cứu này, khi phân tích nhân tố khám phá EFA đề tài sử dụng phương pháp phân tích các nhân tố chính (Principal Components) với số nhân tố (Number of Factor) được xác định là 6 theo mô hình nghiên cứu đề xuất. Mục đích sử

dụng phương pháp này là để rút gọn dữ liệu, hạn chế vi phạm hiện tượng đa cộng tuyến giữa các nhân tố trong việc phân tích mô hình hồi quy tiếp theo.

Phương pháp xoay nhân tố được chọn là Varimax procedure: xoay nguyên gốc các nhân tố để tối thiểu hóa số lượng biến có hệ số lớn tại cùng một nhân tố nhằm tăng cường khả năng giải thích nhân tố. Những biến nào có hệ số tải nhân tố < 0,5 sẽ bị loại khỏi mô hình nghiên cứu, chỉ những biến nào có hệ số tải nhân tố > 0,5 mới được đưa vào các phân tích tiếp theo.

Ở nghiên cứu này, hệ số tải nhân tố (Factor Loading) phải thỏa mãn điều kiện lớn hơn hoặc bằng 0,5. Theo Hair & ctg (1998), Factor Loading là chỉ tiêu để đảm bảo mức ý nghĩa thuyết thực của EFA, Factor Loading > 0,3 được xem là mức tối thiểu và được khuyên dùng nếu cỡ mẫu lớn hơn 350. Factor Loading > 0,4 được xem là quan trọng, Factor Loading > 0,5 được xem là có ý nghĩa thực tiễn, và nghiên cứu này chọn giá trị Factor Loading > 0,5 với cỡ mẫu là 100.

Bảng 2.15 Bảng Rút trích nhân tố biến độc lập

Biến quan sát Nhóm nhân tố

1 2 3 4 5 XAHOI2 0,808 CAMXUC3 0,800 CAMXUC1 0,778 XAHOI1 0,725 XAHOI3 0,681 CAMXUC2 0,615 CHATLUONG5 0,820 CHATLUONG4 0,768 CHATLUONG3 0,712 CHATLUONG2 0,667 CHATLUONG1 0,617 CHUCNANG1 0,817

CHUCNANG2 0,806 CHUCNANG3 0,779 NHANVIEN1 0,821 NHANVIEN2 0,809 NHANVIEN3 0,779 GIACA3 0,833 GIACA1 0,787 GIACA2 0,763 Nguồn:Xử lý số liệu SPSS

Thực hiện phân tích nhân tố lần đầu tiên, đưa 20 biến quan sát trong 6 biến độc lập ảnh hưởng đến GTCN của KH vào phân tích nhân tố theo tiêu chuẩn Eigenvalue lớn hơn 1 đã có 5 nhân tố được tạo ra.

Như vậy, sau khi tiến hành phân tích nhân tố khám phá EFA, số biến quan sát được vẫn là 20, tuy nhiên được rút trích lại còn 5 nhân tố. Không có biến quan sát nào có hệ số tải nhân tố (Factor Loading) bé hơn 0,5 nên không loại bỏ biến. Đề tài sẽ tiếp tục tiến hành các bước phân tích tiếp theo.

Kết quả phân tích nhân tố được chấp nhận khi tiêu chuẩn phương sai trích (Varian Explained Criteria) > 50% và giá trị Eigenvalue lớn hơn 1 (theo Gerbing & Anderson, 1998). Dựa vào kết quả trên, tổng phương sai trích là 64,283% > 50% do đó phân tích nhân tố là phù hợp.

Sau đây, sẽ tiến hành bước đặt tên cho các nhóm nhân tố:

Nhân tố 1: gồm 6 biến quan sát: XAHOI1, XAHOI2, XAHOI3, CAMXUC1, CAMXUC2, CAMXUC3. Nghiên cứu đặt tên nhân tố mới này là “Giá trị cảm tính”.

Nhân tố 2: gồm 5 biến quan sát: CHATLUONG1, CHATLUONG2, CHATLUONG3, CHATLUONG4, CHATLUONG5. Nghiên cứu đặt tên cho nhóm nhân tố này là: “Chất lượng cảm nhận”

Nhân tố 3: gồm 3 biến quan sát: “CHUCNANG1”, “CHUCNANG2”, “CHUCNANG3”. Nghiên cứu đặt tên cho nhóm nhân tố này là: “Giá trị chức năng của công ty”

Nhân tố 4: gồm 3 biến quan quan sát: “NHANVIEN1”, “NHANVIEN2”, “NHANVIEN3”. Nghiên cứu đặt tên cho nhóm nhân tố này là: “Tính chuyên nghiệp của nhân viên”

Nhân tố 5: gồm 3 biến quan quan sát: “GIACA1”, “GIACA2”, “GIACA3”. Nghiên cứu đặt tên cho nhóm nhân tố này là: “ Giá cả cảm nhận”

oKiểm định KMO và Bartlett’s Test biến phụ thuộc

Các điều kiện kiểm định KMO và Bartlett’s Test biến phụ thuộc tương tự như các điều kiện kiểm định của biến độc lập. Sau khi tiến hành phân tích đánh giá chung các GTCN của KH đối với sản phẩm may mặc của công ty Huegatex qua 3 biến quan sát. Kết quả cho thấy hệ số KMO là 0,671 (lớn hơn 0,5) và kiểm định Bartlett’s Test cho giá trị Sig. = 0,000 (bé hơn 0,05) nên dữ liệu điều tra được đáp ứng được điều kiện để tiến hành phân tích nhân tố.

Bảng 2.16 Bảng Kiểm định KMO and Bartlett’s Test biến phụ thuộc

KMO and Bartlett’s Test

Trị số KMO (Kaiser Meyer – Olkin of Sampling Adequacy) 0,671

Đại lượng thống kê Bartlett’s Test

Approx. Chi - Square 69,392

df 3

Sig. 0,000

Nguồn: Xử lý số liệu SPSS

oPhân tích nhân tố khám phá EFA biến phụ thuộc

Bảng 2.17 Bảng rút trích nhân tố biến phụ thuộc

Gía trị cảm nhận tổng thể Hệ số tải

TONGQUAT1 0,830

TONGQUAT2 0,799

TONGQUAT3 0,770

Phương sai tích lũy tiến (%) 63,995

Nguồn: Xử lý số liệu SPSS

Kết quả phân tích nhân tố khám phá rút trích ra được một nhân tố, nhân tố này được tạo ra từ 3 biến quan sát mà đề tài đã đề xuất, nhằm mục đích rút ra kết luận về GTCN của KH đối với sản phẩm may mặc của công ty Huegatex. Nhân tố này có tên gọi là “Giá trị cảm nhận tổng thể”.

Nhận xét:

Quá trình phân tích nhân tố khám phá EFA đã xác định được 5 nhân tố ảnh hưởng đến GTCN của KH TT. Huế đối với sản phẩm may mặc của công ty Huegatex, đó là: “Giá trị cảm tính” (CXXH), “Chất lượng cảm nhận” (CL), “Giá trị chức năng của công ty” (CN), “Tính chuyên nghiệp của nhân viên” (NV) và “Giá cả cảm nhận” (GC).

Như vậy, mô hình nghiên cứu sau khi phân tích nhân tố khám phá EFA không có gì thay đổi đáng kể so với mô hình nghiên cứu ban đầu, không có biến quan sát nào bị loại bỏ khỏi mô hình trong quá trình kiểm định độ tin cậy thang đo và phân tích nhân tố khám phá. Chỉ 2 biến độc lập mà nghiên cứu ban đầu đề xuất là “Giá trị xã hội” và “Giá trị cảm xúc” được rút trích lại còn 1 biến độc lập “Giá trị cảm tính” với 6 biến quan sát. Vậy, ta có mô hình hiệu chỉnh như sau:

Sơ đồ 2.1 Mô hình hiệu chỉnh giá trị cảm nhận của khách hàng về sản phẩm may mặc của công ty Huegatex

Các giả thuyết nghiên cứu hiệu chỉnh:

H1: Giá trị cảm tính (CXXH) có tác động cùng chiều đến GTCN của KH về sản phẩm may mặc tại công ty Huegatex.

H2: Chất lượng cảm nhận (CL) có tác động cùng chiều đến GTCN của KH về sản phẩm may mặc tại công ty Huegatex.

H3: Giá trị chức năng của công ty (CN) có tác động cùng chiều đến GTCN của KH về sản phẩm may mặc tại công ty Huegatex.

H4: Tính chuyên nghiệp của nhân viên (NV) có tác động cùng chiều đến GTCN của KH về sản phẩm may mặc tại công ty Huegatex.

H5: Giá cả cảm nhận (GC) có tác động cùng chiều đến GTCN của KH về sản phẩm may mặc tại công ty Huegatex.

Bảng mã hóa thang đo hiệu chỉnh

Giá trị cảm nhận của khách hàng về sản phẩm may mặc Giá cả cảm nhận Chất lƣợng cảm nhận Giá trị cảm tính

Giá trị chức năng của công ty

Tính chuyên nghiệp của nhân viên

Bảng 2.18 Bảng mã hóa thang đo hiệu chỉnh

STT NỘI DUNG

1. Đo lƣờng giá trị cảm tính (CXXH)

1 XH1 Thương hiệu sản phẩm là sản phẩm được nhiều người biết đến 2 XH2 Thể hiện tính cách khi sử dụng sản phẩm

3 XH3 Cải thiện hình ảnh khi sử dụng sản phẩm 4 CX1 Cảm thấy yên tâm về sản phẩm

5 CX2 Muốn sử dụng sản phẩm 6 CX3 Thích thú về sản phẩm 2. Đo lƣờng chất lƣợng cảm nhận (CL) 7 CL1 Sản phẩm phù hợp 8 CL2 Chất lượng sản phẩm 9 CL3 Kiểu dáng, chủng loại 10 CL4 Sản phẩm có sẵn để đáp ứng nhu cầu khách hàng 11 CL5 Dịch vụ đổi trả sản phẩm

3. Đo lƣờng giá trị chức năng của công ty (CN)

12 CN1 Hệ thống phân phối 13 CN2 Vị trí cửa hàng

14 CN3 Cách trang trí và trưng bày ở cửa hàng

4. Đo lƣờng về tính chuyên nghiệp của nhân viên (NV)

15 NV1 Ứng xử của nhân viên 16 NV2 Kiến thức của nhân viên

17 NV3 Tính chuyên nghiệp của nhân viên

5. Đo lƣờng về giá cả cảm nhận (GC)

18 GC1 Giá cả phù hợp

19 GC2 Giá sản phẩm được niêm yết, công khai rõ ràng 20 GC3 Có nhiều chương trình xúc tiến bán hàng hấp dẫn

6. Giá trị cảm nhận tổng thể (TQ)

21 TQ1 Khách hàng cảm nhận tốt về sản phẩm

22 TQ2 Khách hàng hài lòng về giá trị nhận được khi sử dụng sản phẩm 23 TQ3 Khách hàng cảm nhận được sản phẩm được đáp ứng tương xứng

với chi phí bỏ ra.

Nguồn:Xử lý số liệu SPSS

Kiểm định độ tin cậy của thang đo sau phân tích nhân tố khám phá EFA

Bảng 2.19 Bảng Kiểm định độ tin cậy thang đo nhân tố mới

Hệ số Cronbach’s Alpha Biến độc lập

Giá trị cảm tính 0,851

Chất lượng cảm nhận 0,786

Giá trị chức năng của công ty 0,799

Tính chuyên nghiệp của nhân viên 0,804

Giá cả cảm nhận 0,754

Biến phụ thuộc

Giá trị cảm nhận tổng thể 0,718

Nguồn: Xử lý số liệu SPSS

Nhìn vào bảng tổng hợp phân tích, có thể nhận ra rằng hệ số Cronbach’s Alpha của các nhân tố này khá cao (đều lớn hơn 0,7), vì vậy các nhân tố mới này đảm bảo độ tin cậy và có ý nghĩa trong các phân tích sau.

Kiểm định sự phù hợp của mô hình

oKiểm định mối tương quan giữa biến độc lập và biến phụ thuộc Bảng 2.20 Bảng phân tích tương quan Pearson

TQ CXXH CL CN NV GC

TQ

Tương quan Pearson 1 0,549 0,485 0,651 0,587 0,468 Sig.(2-tailed) 0,000 0,000 0,000 0,000 0,000

N 120 120 120 120 120 120

Nguồn:Xử lý số liệu SPSS

Dựa vào kết quả phân tích trên, ta thấy

Giá trị Sig.(2-tailed) của các nhân tố mới đều bé hơn mức ý nghĩa α = 0,05; vậy biến phụ thuộc có quan hệ tương quan tuyến tính với cả 5 biến độc lập.

Hệ số tương quan Pearson cũng tương đối, như vậy có thể nói rằng các biến độc lập này có thể đưa vào mô hình để giải thích cho biến “giá trị cảm nhận tổng thể”.

o Xây dựng mô hình hồi quy

Sau khi tiến hành phân tích nhân tố khám phá EFA để khám phá các nhân tố mới có ảnh hưởng đến biến phụ thuộc “giá trị cảm nhận tổng thể”, nghiên cứu tiến hành hồi quy mô hình tuyến tính để xác định được chiều hướng và mức độ ảnh hưởng của các nhân tố mới này đến quyết định sử dụng.

Mô hình hồi quy được xây dựng gồm biến phụ thuộc là “giá trị cảm nhận tổng thể” (TQ) và các biến độc lập được rút trích từ nhân tố khám phá EFA gồm 5 biến: “Giá trị cảm tính” (CXXH), “Chất lượng cảm nhận” (CL), “Giá trị chức năng của công ty” (CN), “Tính chuyên nghiệp của nhân viên” (NV), “Giá cả cảm nhận” (GC) với các hệ số Beta tương ứng lần lượt là

Mô hình hồi quy được xây dựng như sau

TQ = + CXXH + CL + CN + NV + GC +

Dựa vào hệ số Beta chuẩn hóa với mức ý nghĩa Sig. tương ứng để xác định các biến độc lập nào có ảnh hưởng đến biến phụ thuộc trong mô hình và ảnh hưởng với mức độ ra sao, theo chiều hướng nào. Từ đó, làm căn cứ để kết luận chính xác hơn và đưa ra giải pháp mang tính thuyết phục cao. Kết quả của mô hình hồi quy sẽ giúp ta xác định được chiều hướng, mức độ ảnh hưởng của các yếu tố ảnh hưởng đến giá trị cảm nhận của khách

Một phần của tài liệu (LUẬN văn THẠC sĩ) giá trị cảm nhận của khách hàng tỉnh thừa thiên huế đối với sản phẩm may mặc của công ty cổ phân dệt may huế (huegatex) (Trang 61)

Tải bản đầy đủ (PDF)

(121 trang)